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Abstract. Let H2(D2) be the Hardy space over the bidisk. Let
{ϕn(z)}n≥0 and {ψn(w)}n≥0 be sequences of one variable inner functions
satisfying some additinal conditions. Associated with them, we have a Rudin
type invariant subspace M of H2(D2). We study the Beurling type theorem
for the fringe operator Fw on M ª zM .

1. Introduction.

Let T be a bounded linear operator on a Hilbert space H. For a subset E

of H, we denote by [E]H the smallest invariant subspace of H for T containing
E. Let M be an invariant subspace of H for T . We denote by M ª TM the
orthogonal complement of TM in M . The space M ª TM is called a wandering
subspace of M for the operator T . We have [M ª TM ]H ⊂ M . We say that the
Beurling type theorem for T if [M ª TM ]H = M for every invariant subspace M

of H for T . Our basic problem is to find operators T on H for which the Beurling
type theorem holds.

Let D be the open unit disk in the complex plane C. We denote by H2(D) the
Hardy space on D. A function ϕ(z) in H2(D) is called inner if |ϕ(z)| = 1 a.e. on
∂D. Let Tz be the multiplication operator on H2(D) by the coordinate function z.
For every nonzero invariant subspaces M of H2(D) for Tz, the Beurling theorem [2]
says that MªTzM = C ·ϕ(z) for an inner function ϕ(z) and M = [MªTzM ]H2(D)

(see also [5], [7]). For a nonzero closed invariant subspace M of the Dirichlet shift
Tz on the Dirichlet space D , Richter showed that dim(M ª TzM) = 1 and the
Beurling type theorem holds for the Dirichlet shift in [15]. Aleman, Richter,
and Sundberg proved that the Beurling type theorem also holds for the Bergman
shift on the Bergman space L2

a(D) in [1]. In [19], Shimorin showed the following
theorem.
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Shimorin’s Theorem. If T : H → H satisfies the following conditions

(a) ‖Tx + y‖2 ≤ 2(‖x‖2 + ‖Ty‖2), x, y ∈ H,
(b)

⋂{TnH : n ≥ 0} = {0},
then the Beurling type theorem holds for T .

As an application of this theorem, Shimorin gave a simpler proof of the Ale-
man, Richter, and Sundberg theorem (see also [6]). Later, different proofs of the
the Beurling type theorem are given in [12], [14], [20]. Recently, the authors [8]
proved the following theorem.

Theorem A. If T : H → H satisfies the following conditions

( i ) ‖Tx‖2 + ‖T ∗2Tx‖2 ≤ 2‖T ∗Tx‖2, x ∈ H,
( ii ) T is bounded below,
(iii) ‖T ∗nx‖ → 0 as n →∞ for every x ∈ H,

then the Beurling type theorem holds for T .

Also it is pointed out that conditions (a) and (b) in Shimorin’s theorem are
equivalent to conditions (i)–(iii) in Theorem A.

Let H2 := H2(D2) be the Hardy space over the bidisk D2. We identify a
function in H2 with its boundary function on the distinguished boundary (∂D)2 of
D2, so we think of H2 as a closed subspace of the Lebesgue space L2 := L2((∂D)2).
We use z, w as variables in D2. We denote by H2(z) the z-variable Hardy space,
and we think of H2(z) as a closed subspace of H2. Then H2 coincides with the
tensor product H2(z)⊗H2(w). Let Tz, Tw be multiplication operators on H2 by
z and w. A closed subspace M of H2 is called invariant if TzM ⊂ M and TwM

⊂ M . For a subset E of M , we denote by [E]H2 the smallest invariant subspace
containing E. For a subspace E of H2, we denote by PE the orthogonal projection
from L2 onto E. See books [3], [16] for the study of the Hardy space H2 over D2.

Let M be an invariant subspace of H2. Write Rz = Tz|M and Rw = Tw|M ,
the operators on M . Since Rz is an isometry on M , by the Wold decomposition
theorem we have

M =
∞∑

n=0

⊕(M ª zM)zn.

So a lot of information of an invariant subspace M are considered to be encoded
in those of M ª zM . So to study the structure of invariant subspaces M of H2,
M ª zM is one of the most important spaces. Note that PMªzM = I −RzR

∗
z . To

study M ª zM , Yang [21] defined the fringe operator Fw on M ª zM by
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Fwf = PMªzMRwf, f ∈ M ª zM,

and studied the properties of Fw (see [21], [22], [23]).
Let Mϕ := [z−ϕ(w)]H2 for a nonconstant inner function ϕ(w). In the previous

paper [9], as applications of Theorem A we studied the Beurling type theorem for
the fringe operator Fw on Mϕ ª zMϕ and for the compression operator Sz on
H2 ªMϕ, respectively.

In this paper, we shall study invariant subspaces of H2 based on inner se-
quences. Let {ϕn(z)}n≥0 and {ψn(w)}n≥0 be sequences of inner functions such
that ϕn(z)/ϕn+1(z) and ψn+1(w)/ψn(w) are inner functions for every n ≥ 0.
Moreover we assume that

⋂∞
n=0 ψn(w)H2(w) = {0}. Let

M =
∞∑

n=0

⊕(
ϕn(z)H2(z)

)⊗ (
ψn(w)H2(w)ª ψn+1(w)H2(w)

)
.

Then M is an invariant subspace of H2. This type of invariant subspaces of H2

have been studied in [4], [16], [17], [18]. We have

M ª zM =
∞∑

n=0

⊕ϕn(z)
(
ψn(w)H2(w)ª ψn+1(w)H2(w)

)
.

We study the Beurling type theorem for the fringe operator Fw on M ª zM .
Without loss of generality, we assume that ψ0(w) = 1. Our strategy of the study
is to define an invertible bounded linear operator V : H2(w) → MªzM satisfying
V Tw = FwV on H2(w). Using this operator, we study the Beurling type theorem
for Fw on M ª zM . In Section 2, we shall study the case ϕ0(0) 6= 0, and in
Section 4 we shall study the case ϕ0(0) = 0.

For nonconstant inner functions ϕ(z) and ψ(w), let

M = ϕ(z)H2 + ψ(w)H2.

Then M is an invariant subspace of H2 and a special case of M . Recently these
type of M are studied in [10], [23]. In Section 3, we study the Beurling type
theorem for Fw on M ª zM . When

ψ(w) =
w − β

1− βw
, |β| < 1,

we shall show that the Beurling type theorem holds for Fw on M ªzM if and only
if |β|/(1 + |β|) ≤ |α|2, where α = ϕ(0) 6= 0.
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2. Invariant subspaces based on inner sequences.

Let {ϕn(z)}n≥0 and {ψn(w)}n≥0 be sequences of inner functions satisfying
the following conditions;

(1) ψ0(w) = 1,
(2) (ϕn(z))/(ϕn+1(z)) is an inner function and (ψn+1(w))/(ψn(w)) is a noncon-

stant inner function for every n ≥ 0,
(3)

⋂∞
n=0 ψn(w)H2(w) = {0}.

Write

ϕn(z)
ϕn+1(z)

= ζn(z) and
ψn+1(w)
ψn(w)

= ξn(w).

Let

M =
∞∑

n=0

⊕(
ϕn(z)H2(z)

)⊗ (
ψn(w)H2(w)ª ψn+1(w)H2(w)

)

=
∞∑

n=0

⊕(
ϕn(z)H2(z)

)⊗ (
ψn(w)

(
H2(w)ª ξn(w)H2(w)

))
.

By conditions (2) and (3), it is not difficult to see that M is an invariant subspace
of H2 and

M ª zM =
∞∑

n=0

⊕ϕn(z)ψn(w)
(
H2(w)ª ξn(w)H2(w)

)
.

By (1) and (3), we have

H2(w) =
∞∑

n=0

⊕ψn(w)
(
H2(w)ª ξn(w)H2(w)

)
.

For each n ≥ 0, we write

En = ψn(w)
(
H2(w)ª ξn(w)H2(w)

)
.

Then
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H2(w) =
∞∑

n=0

⊕En and M ª zM =
∞∑

n=0

⊕ϕn(z)En.

Moreover in this and next sections, we assume that

(4) 0 < |ϕ0(0)| < 1.

Let A0 = 1, and for each positive integer n let

An =
n−1∏

j=0

ζj(0).

By conditions (2) and (4), ϕn(0) 6= 0, ζn(0) 6= 0, and An 6= 0 for every n ≥ 0. We
have

An =
n−1∏

j=0

ϕj(0)
ϕj+1(0)

=
ϕ0(0)
ϕn(0)

,

so we get 0 < |ϕ0(0)| ≤ |An+1| ≤ |An| ≤ |A0| = 1. Note that |ζn(0)| → 1 as
n →∞. We define an operator V : H2(w) → M ª zM by

V (gn(w)) = Anϕn(z)gn(w), gn(w) ∈ En.

Then V is an invertible bounded linear operator.

Lemma 2.1. Let

g =
∞∑

n=0

⊕ϕn(z)gn(w) ∈
∞∑

n=0

⊕ϕn(z)En = M ª zM

and

f(w) =
∞∑

n=0

⊕fn(w) ∈
∞∑

n=0

⊕En = H2(w).

Then we have the following.

( i ) V ∗g =
∑∞

n=0⊕Angn(w) ∈ H2(w).
( ii ) V −1g =

∑∞
n=0⊕A−1

n gn(w) ∈ H2(w).

(iii) (V ∗)−1f(w) =
∑∞

n=0⊕A
(−1)

n ϕn(z)fn(w) ∈ M ª zM .
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(iv) (V ∗V )−1f(w) =
∑∞

n=0⊕|An|−2fn(w) ∈ H2(w).

Proof. (i) We have

〈V ∗g, f(w)〉 = 〈g, V f(w)〉

=
〈 ∞∑

n=0

⊕ϕn(z)gn(w),
∞∑

n=0

⊕Anϕn(z)fn(w)
〉

=
∞∑

n=0

〈Angn(w), fn(w)〉

=
〈 ∞∑

n=0

⊕Angn(w),
∞∑

n=0

⊕fn(w)
〉

.

Thus we get (i).
It is easy to get (ii)–(iv) from (i) and the definition of V . ¤

The following is a key theorem in this paper.

Theorem 2.2. V Tw = FwV on H2(w).

Proof. Let k be a nonnegative integer. We have

∞∑

n=k

⊕En = ψk(w)H2(w),

so
∑∞

n=k ⊕En is an invariant subspace of H2(w) for Tw. Let f(w) ∈ Ek. Then we
may write wf(w) as

wf(w) =
∞∑

n=k

⊕fn(w) ∈
∞∑

n=k

⊕En.

Hence

V Twf(w) =
∞∑

n=k

⊕Anϕn(z)fn(w).

We have also
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FwV f(w) = FwAkϕk(z)f(w)

= AkPMªzM

(
ϕk(z)

∞∑

n=k

⊕fn(w)
)

= Ak

∞∑

n=k

⊕PMªzM (ϕk(z)fn(w))

= Ak

∞∑

n=k

⊕〈
ϕk(z)fn(w), ϕn(z)fn(w)

〉ϕn(z)fn(w)
‖fn‖2

= Ak

∞∑

n=k

⊕〈ϕk(z), ϕn(z)〉ϕn(z)fn(w)

= Akϕk(z)fk(w)⊕
∞∑

n=k+1

⊕Ak

〈
ϕk

ϕk+1

ϕk+1

ϕk+2
· · · ϕn−1

ϕn
, 1

〉
ϕn(z)fn(w)

= Akϕk(z)fk(w)⊕
∞∑

n=k+1

⊕
( k−1∏

j=0

ζj(0)
)( n−1∏

j=k

ζj(0)
)

ϕn(z)fn(w)

=
∞∑

n=k

⊕Anϕn(z)fn(w).

Therefore V Twf(w) = FwV f(w) for every f(w) in Ek and k ≥ 0. This shows the
assertion. ¤

The following corollary follows directly from Theorem 2.2.

Corollary 2.3. For every inner function θ(w), V (θ(w)H2(w)) is an in-
variant subspace of M ª zM for Fw.

Theorem 2.4. Let L be a nonzero invariant subspace of M ª zM for Fw.
Then we have the following.

( i ) L = V (θ(w)H2(w)) for an inner function θ(w).
( ii ) V θ(w) is a cyclic vector of L for Fw.
(iii) dim(Lª FwL) = 1.
(iv) (M ª zM )ª L = (V ∗)−1

(
H2(w)ª θ(w)H2(w)

)
.

( v ) Let g ∈ L satisfy LªFwL = C ·g. Then [LªFwL]MªzM = L if and only if
(V −1g)/θ(w) is an outer function. If (V −1g)/θ(w) is not outer, let θ1(w)
be its inner factor, then

V ((θθ1)(w)H2(w)) = [Lª FwL]MªzM .
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(vi) g = PL(V ∗)−1θ(w) for g in (v).

Proof.

(i) By Theorem 2.2, we have V TwV −1L = FwL ⊂ L. Then TwV −1L ⊂ V −1L

and V −1L is a nonzero closed subspace of H2(w). By the Beurling theorem,
V −1L = θ(w)H2(w) for an inner function θ(w). Thus we get L = V (θ(w)H2(w)).

(ii) By Theorem 2.2, V (T k
wθ(w)) = F k

wV (θ(w)) for every k ≥ 0. Since θ(w)
is a cyclic vector in θ(w)H2(w) for Tw, by (i) we get (ii).

(iii) By (i) and Theorem 2.2,

FwL = FwV (θ(w)H2(w)) = V Tw(θ(w)H2(w)) = V (wθ(w)H2(w)).

Since V : H2(w) → M ª zM is invertible,

FwL $ C · V θ(w) + V (wθ(w)H2(w)) = L

and FwL is closed. Thus we get (iii).
(iv) Let f ∈ M ªzM . By (i), f ⊥ L if and only if V ∗f ⊥ θ(w)H2(w). Hence

V ∗((M ª zM )ª L
)

= H2(w)ª θ(w)H2(w).

Thus we get the assertion.
(v) By Theorem 2.2, V T k

wV −1 = F k
w for every k ≥ 0. So [LªFwL]MªzM = L

if and only if the linear span of {wk(V −1g)(w) : k ≥ 0} is dense in θ(w)H2(w).
Thus we get the first assertion.

Suppose that (V −1g)(w)/θ(w) is not outer. Let θ1(w) be its inner factor. By
the above argument, we have

V ((θθ1)(w)H2(w)) = [Lª FwL]MªzM .

(vi) We have (V ∗)−1θ(w) ⊥ FwL. For, by (i) we have

〈
(V ∗)−1θ(w), Fwh

〉
=

〈
θ(w),V −1Fwh

〉
=

〈
θ(w), TwV −1h

〉
= 0

for every h ∈ L. Also we have (V ∗)−1θ(w) 6⊥ L. For, by (i) we have θ(w) 6⊥
θ(w)H2(w) = V −1L. Hence by (iii), we may take g(w) = PL(V ∗)−1θ(w). ¤

For arbitrary inner function θ(w), it seems difficult to compute g =
PL(V ∗)−1θ(w). But for some special cases, we may compute it. For each k ≥ 0,
let
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Mk =
∞∑

n=k

⊕(
ϕn(z)H2(z)

)⊗ (
ψn(w)

(
H2(w)ª ξn(w)H2(w)

))
.

Then we have

Mk ª zMk =
∞∑

n=k

⊕ϕn(z)En = V (ψk(w)H2(w)).

Hence by Corollary 2.3, Mk ª zMk is an invariant subspace of M ª zM for Fw,
and by Theorem 2.4 (ii) V ψk(w) is a cyclic vector of Mk ª zMk for Fw.

Corollary 2.5.

(Mk ª zMk)ª Fw(Mk ª zMk) = C · (V ∗)−1ψk(w)

for every k ≥ 0.

Proof. Write

ψk(w) =
∞∑

n=k

⊕fn(w) ∈
∞∑

n=k

⊕En.

By Lemma 2.1 (iii),

(V ∗)−1ψk(w) =
∞∑

n=k

⊕A
(−1)

n ϕn(z)fn(w) ∈ Mk ª zMk.

By Theorem 2.4 (vi),

(Mk ª zMk)ª Fw(Mk ª zMk) = C · (V ∗)−1ψk(w). ¤

Corollary 2.6. For each k ≥ 0,
(
(V ∗V )−1ψk(w)

)
/ψk(w) is an outer

function if and only if

[
(Mk ª zMk)ª Fw(Mk ª zMk)

]
MªzM

= Mk ª zMk.

Proof. Since (V ∗V )−1ψk(w) = V −1(V ∗)−1ψk(w), by Theorem 2.4 (v)
and Corollary 2.5 we get the assertion. ¤

Corollary 2.7. Let k ≥ 0. If ξk(0) = 0, then
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[
(Mk ª zMk)ª Fw(Mk ª zMk)

]
MªzM

= Mk ª zMk.

Proof. We have ψk+1(w) = ψk(w)ξk(w). Since ξk(0) = 0, we have ψk(w) ∈
Ek. So we have (V ∗)−1ψk(w) = A

(−1)

k ϕk(z)ψk(w). Moreover V −1(V ∗)−1ψk(w) =
|Ak|−2ψk(w). Thus (V ∗V )−1ψk(w)/ψk(w) = |Ak|−2 is outer. Then by Corollary
2.6, we get the assertion. ¤

We note that

(M ª zM )ª Fw(M ª zM ) = M ª (zM + wM ).

Corollary 2.8. If (V ∗V )−11 is not an outer function, then

[M ª (zM + wM )]M 6= M .

Proof. By Corollary 2.6,

[
(M ª zM )ª Fw(M ª zM )

]
MªzM

$M ª zM .

Hence

[M ª (zM + wM )]MªzM $M ª zM .

Therefore

(M ª zM )ª [M ª (zM + wM )]MªzM ⊥ [M ª (zM + wM )]M .

Thus we get the assertion. ¤

The converse of Corollary 2.8 does not hold, see Theorem 3.1 (v).

Theorem 2.9. Suppose that ξk+1(0) = 0 for some k ≥ 0. Let α = ζk(0)
and β = ξk(0). Then we have the following.

( i ) If 1/2 ≤ |α|2 ≤ 1, then

[
(Mk ª zMk)ª Fw(Mk ª zMk)

]
MªzM

= Mk ª zMk.

( ii ) If 0 < |α|2 < 1/2 and |β|/(1 + |β|) ≤ |α|2, then

[
(Mk ª zMk)ª Fw(Mk ª zMk)

]
MªzM

= Mk ª zMk.
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(iii) If 0 < |α|2 < 1/2 and |α|2 < |β|/(1 + |β|), then

[
(Mk ª zMk)ª Fw(Mk ª zMk)

]
MªzM

6= Mk ª zMk,

so in this case the Beurling type theorem does not hold for Fw on M ª zM .

Proof. Recall that Ek = ψk(w)
(
H2(w) ª ξk(w)H2(w)

)
for each k ≥ 0.

Since ξk+1(0) = 0, ψk(w) ⊥ ψk+2(w)H2(w) and ψk+1(w) ∈ Ek+1, so we have

ψk(w) = ψk(w)
(
1− ξk(0)ξk(w)

)⊕ ξk(0)ψk(w)ξk(w)

= ψk(w)
(
1− ξk(0)ξk(w)

)⊕ ξk(0)ψk+1(w)

∈ Ek ⊕ Ek+1.

Note that Ak+1 = Akζk(0) = αAk. By Lemma 2.1 (iv),

(V ∗V )−1ψk(w) =
1

|Ak|2 ψk(w)
(
1− ξk(0)ξk(w)

)⊕ ξk(0)ψk(w)ξk(w)
|α|2|Ak|2

=
ψk(w)
|Ak|2

(
1 +

1− |α|2
|α|2 βξk(w)

)
.

Hence
(
(V ∗V )−1ψk(w)

)
/ψk(w) is an outer function if and only if

1− |α|2
|α|2 |β| ≤ 1, that is,

|β|
1 + |β| ≤ |α|2.

Therefore if 1/2 ≤ |α|2 ≤ 1, then (1− |α|2)/|α|2 ≤ 1, so
(
(V ∗V )−1 ψk(w)

)
/ψk(w)

is outer. If 0 < |α|2 < 1/2 and |β|/(1 + |β|) ≤ |α|2, then
(
(V ∗V )−1ψk(w)

)
/ψk(w)

is outer. If 0 < |α|2 < 1/2 and |α|2 < |β|/(1 + |β|), then
(
(V ∗V )−1ψk(w)

)
/ψk(w)

is not outer. By Corollary 2.6, we get the assertion. ¤

Theorem 2.10. Suppose that ξk+1(0) = 0, 0 < |ζk(0)|2 < 1/2, and ξk(w)
is not a finite Blaschke product for some k ≥ 0. Then the Beurling type theorem
does not hold for Fw on M ª zM .

Proof. Write α = ζk(0). Then 0 < |α|2 < 1/2, so |α|2/(1− |α|2) < 1. By
our assumption, there is an inner subfactor η0(w) of ξk(w) such that |α|2/(1 −
|α|2) < |η0(0)| < 1. Write ξk(w) = η0(w)η1(w). Let θ(w) = ψk(w)η1(w). Since
ψk+1(w) = ψk(w)ξk(w), ψk+1(w)/η0(w) = θ(w). Hence we have
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ψk+1(w)H2(w) ⊂ θ(w)H2(w) ⊂ ψk(w)H2(w).

We shall show that

[
V (θ(w)H2(w))ª FwV (θ(w)H2(w))

]
MªzM

6= V (θ(w)H2(w)),

so we get the assertion.
We note that ψn(w)/θ(w) is an inner function for every n ≥ k + 1. Let

pn(z) = ϕk+n(z), n ≥ 0

and

q0(w) = 1 and qn(w) =
ψk+n(w)

θ(w)
, n ≥ 1.

Write

µn(w) =
qn+1(w)
qn(w)

.

Then

µ0(w) =
ψk+1(w)

θ(w)
and µn(w) =

ψk+n+1(w)
ψk+n(w)

= ξk+n(w), n ≥ 1.

We note that {pn(z)}n≥0 and {qn(w)}n≥0 satisfy conditions (1)–(4). Let

L =
∞∑

n=0

⊕(
pn(z)H2(z)

)⊗ (
qn(w)

(
H2(w)ª µn(w)H2(w)

))
.

Then L is an invariant subspace of H2 and

L ª zL =
∞∑

n=0

⊕pn(z)qn(w)
(
H2(w)ª µn(w)H2(w)

)

= ϕk(z)
(

H2(w)ª ψk+1(w)
θ(w)

H2(w)
)

⊕
∞∑

n=1

⊕ϕk+n(z)
ψk+n(w)

θ(w)
(
H2(w)ª ξk+n(w)H2(w)

)
.
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We have

θ(w)H2(w) =
(
θ(w)H2(w)ª ψk+1(w)H2(w)

)

⊕
∞∑

n=1

⊕ψk+n(w)
(
H2(w)ª ξk+n(w)H2(w)

)

⊂ Ek ⊕
∞∑

n=k+1

⊕En.

We have also

θ(w)(L ª zL ) = ϕk(z)
(
θ(w)H2(w)ª ψk+1(w)H2(w)

)

⊕
∞∑

n=1

⊕ϕk+n(z)ψk+n(w)
(
H2(w)ª ξk+n(w)H2(w)

)

= V (θ(w)H2(w)) ⊂ M ª zM .

Let

K =
(
ϕk(z)H2(z)

)⊗ (
θ(w)H2(w)ª ψk+1(w)H2(w)

)

⊕
∞∑

n=1

⊕(
ϕk+n(z)H2(z)

)⊗ (
ψk+n(w)

(
H2(w)ª ξk+n(w)H2(w)

))
.

Then K is an invariant subspace of H2 and K ª zK = V (θ(w)H2(w)). Write
Vz = Tz|L , Vw = Tw|L , Wz = Tz|K , and Ww = Tw|K . We define a unitary oper-
ator U : L → K by Uf = θ(w)f, f ∈ L . Then UVz = WzU and UVw = WwU .
Let Gw and Hw be the fringe operators on L ª zL and K ª zK , respectively.
Then Fw|K ªzK = Hw, and for f ∈ L ª zL we have

U−1HwUf = U−1PK ªzK WwUf

= U−1(IK −WzW
∗
z )UVwf

= (IL − VzV
∗
z )Vwf

= PLªzL Vwf

= Gwf,

where IK is the identity operator on K . Hence UGw = FwU on L ª zL . By
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this fact, we have

[
V (θ(w)H2(w))ª FwV (θ(w)H2(w))

]
MªzM

= V (θ(w)H2(w))

if and only if

[
(L ª zL )ªGw(L ª zL )

]
LªzL

= L ª zL .

Now we work on L ª zL . We have

p0(0)
p1(0)

=
ϕk(0)

ϕk+1(0)
= ζk(0) = α and 0 < |α|2 <

1
2
,

and

q2(w) =
ψk+2(w)

θ(w)
=

ψk+1(w)ξk+1(w)
θ(w)

= η0(w)ξk+1(w).

Since ξk+1(0) = 0, we get q2(0) = 0. We have also

q1(w) =
ψk+1(w)

θ(w)
= η0(w).

Hence q1(0) = η0(0). Moreover we have |α|2/(1 − |α|2) < |η0(0)| < 1. Therefore
by Theorem 2.9 (iii), we get

[
(L ª zL )ªGw(L ª zL )

]
LªzL

6= L ª zL .

This shows that

[
V (θ(w)H2(w))ª FwV (θ(w)H2(w))

]
MªzM

6= V (θ(w)H2(w)).

Thus we get the assertion. ¤

Example 2.11. Let α = ϕ0(0)/ϕ1(0). We shall give an example of M
satisfying 1/2 ≤ |α|2 < 1, but the Beurling type theorem does not hold for Fw on
M ª zM , compared with the assertion of Theorem 2.9.

Let ψ0(w) = 1, ψ1(w) be a singular inner function and ψn(w) = wnψ1(w) for
n ≥ 2. Let ϕ0(z) be a singular inner function satisfying 0 < |ϕ0(0)|2 < 1/2. There
exists a positive number r1 with 0 < r1 < 1 satisfying 1/2 < |ϕ0(0)|2/|ϕ0(0)r1 |2 <
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1 and |ϕ0(0)|2 < |ϕ0(0)r1 |2 < 1/2. Let ϕ1(z) = ϕ0(z)r1 . Then there exists a
positive number r2 with 0 < r2 < r1 < 1 satisfying 0 < |ϕ1(0)|2/|ϕ0(0)r2 |2 < 1/2.
Let ϕ2(z) = ϕ0(z)r2 and {rn}n≥3 be a sequence of positive numbers satisfying
0 < rn+1 < rn < r2 < r1 < 1. Then {ϕn(z)}n≥0 and {ψn(z)}n≥0 satisfy conditions
(1)–(4). Note that ξ0(w) = ψ1(w)/ψ0(w) = ψ1(w) is not a finite Blaschke product.
Since

ξ2(w) =
ψ3(w)
ψ2(w)

=
w3ψ1(w)
w2ψ1(w)

= w,

we have ξ2(0) = 0. Also we have 0 < |ζ1(0)| = |ϕ1(0)|2/|ϕ2(0)|2 < 1/2. Therefore
by Theorem 2.10, the Beurling type theorem does not hold for Fw on M ª zM .

¤

Here we study the case ψn(w) = wn, n ≥ 0. We write en = ϕn(z)wn for
n ≥ 0. Then {en}n≥0 is an orthonormal basis for M ª zM . We have

Fwen = 〈wen, en+1〉en+1 = 〈ϕn(z), ϕn+1(z)〉en+1 = ζn(0)en+1,

so Fw on M ª zM is a unilateral weighted shift operator. The following was
pointed out essentially in [9, Theorem 2.1] as an application of Theorem A.

Lemma 2.12. Let H be a separable Hilbert space with an orthonormal basis
{τn}n≥0. Let {cn}n≥0 be a sequence of complex numbers satisfying supn |cn| < ∞.
Let T be a unilatral weighted shift on H defined by Tτn = cnτn+1 for n ≥ 0. If
1/
√

2 ≤ |c0| ≤ 1 and 1 ≤ |cn|2(2− |cn−1|2) for every n ≥ 1, then the Beurling type
theorem holds for T .

By the above lemma, we have the following.

Theorem 2.13. Suppose that ψn(w) = wn for every n ≥ 0. If

|ζ0(0)|2 ≥ 1
2

and |ζn(0)|2 ≥ 1
2− |ζn−1(0)|2 for every n ≥ 1,

then the Beurling type theorem holds for the fringe operator Fw on M ª zM .

3. The case M = ϕ(z)H2 + ψ(w)H2.

Let ϕ(z) and ψ(w) be nonconstant inner functions with ϕ(0) 6= 0 and

M = ϕ(z)H2 + ψ(w)H2.
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Then M coincides with M associated with the sequences of inner functions

ϕ0(z) = ϕ(z), ϕn(z) = 1, n ≥ 1

and

ψ0(w) = 1, ψn(w) = wn−1ψ(w), n ≥ 1.

So to study M we use the same notations as the ones in Section 2. We have
A0 = 1, An = ϕ(0) = ζ0(0) for n ≥ 1, ξ0(w) = ψ(w), and ξn(w) = w for n ≥ 1.
We have also

E0 = H2(w)ª ψ(w)H2(w) and En = C · wn−1ψ(w), n ≥ 1.

Theorem 3.1. Let ϕ(z) and ψ(w) be nonconstant inner functions with
ϕ(0) 6= 0 and M = ϕ(z)H2 + ψ(w)H2. Let α = ϕ(0) and β = ψ(0). Then
we have the following.

( i ) If 1/2 ≤ |α|2, then

[
(M ª zM)ª Fw(M ª zM)

]
MªzM

= M ª zM.

( ii ) If 0 < |α|2 < 1/2 and |β|/(1 + |β|) ≤ |α|2, then

[
(M ª zM)ª Fw(M ª zM)

]
MªzM

= M ª zM.

(iii) If 0 < |α|2 < 1/2 and |α|2 < |β|/(1 + |β|), then

[
(M ª zM)ª Fw(M ª zM)

]
MªzM

6= M ª zM,

so in this case the Beurling type theorem does not hold for Fw on M ª zM .
(iv) If 0 < |α|2 < 1/2 and ψ(w) is not a finite Blaschke product, then the

Beurling type theorem does not hold for Fw on M ª zM .
( v ) If β 6= 0, then [Mª(zM+wM)]M 6= M . Moreover if 0 < |β|/(1+|β|) ≤ |α|2,

then (V ∗V )−11 is outer.

Proof. (i)–(iii) follow from Theorem 2.9. (iv) follows from Theorem 2.10.
(v) Since ψ2(0) = 0, we have

1 =
(
1− βψ(w)

)⊕ βψ(w) ∈ E0 ⊕ E1.
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Since A0 = 1 and A1 = α, by Lemma 2.1 (iii) we have

(V ∗)−11 = ϕ(z)
(
1− βψ(w)

)⊕ β

α
ψ(w)

=
(
1− βψ(w)

)(
ϕ(z) +

β

α

ψ(w)
1− βψ(w)

)
.

Since ϕ(z) and ψ(w) are nonconstant inner functions, we have

(−ϕ(D)) ∩
(

β

α

ψ(w)
1− βψ(w)

)
(D) 6= ∅.

Hence there is (z1, w1) ∈ D2 such that
(
(V ∗)−11

)
(z1, w1) = 0, so (V ∗)−11 vanishes

on some complex curve C in D2 containing (z1, w1). By Corollary 2.5, Mª(zM +
wM) = C · (V ∗)−11. Therefore any function in [M ª (zM + wM)]M vanishes on
C. On the other hand, the common zero set in D2 of ϕ(z)H2 +ψ(w)H2 equals to

{(z, w) ∈ D2 : ϕ(z) = 0, ψ(w) = 0}

and this is a discrete set in D2. Therefore we get [M ª (zM + wM)]M 6= M .
We have

(V ∗V )−11 =
(
1− βψ(w)

)⊕ β

|α|2 ψ(w) = 1 +
β(1− |α|2)

|α|2 ψ(w).

Hence if |β|/(1 + |β|) ≤ |α|2, that is, |β|(1 − |α|2)/|α|2 ≤ 1, then (V ∗V )−11 is
outer. ¤

Corollary 3.2. Let ϕ(z) and ψ(w) be nonconstant inner functions with
ϕ(0) 6= 0 and M = ϕ(z)H2 + ψ(w)H2. Then [M ª (zM + wM)]M 6= M .

Proof. Suppose that
[
Mª(zM+wM)

]
M

= M and ϕ(0) 6= 0. By Theorem
3.1 (v), we have ψ(0) = 0. Hence we have M ª (zM + wM) = C · ϕ(z), so
[M ª (zM + wM)]M = ϕ(z)H2 6= M . This is a contradiction. ¤

Remark 3.3. Let M = ϕ(z)H2 + ψ(w)H2 for nonconstant inner functions
ϕ(z) and ψ(w) (here we do not assume that ϕ(0) 6= 0). We note that [M ª (zM +
wM)]M = M if and only if ϕ(0) = ψ(0) = 0. For, if either ϕ(0) 6= 0 or ψ(0) 6= 0,
by Corollary 3.2 we have [M ª (zM + wM)]M 6= M .

Suppose that ϕ(0) = ψ(0) = 0. Then it is easy to see that
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M ª (zM + wM) = C · ϕ(z)⊕C · ψ(w),

so we get
[
M ª (zM + wM)

]
M

= M (see also [11, Theorem 2.3]). ¤

Now we study the invariant subspace M under the assumption that

ψ(w) =
w − β

1− βw
, |β| < 1.

Theorem 3.4. Let ϕ(z) be a nonconstant inner function with ϕ(0) 6= 0,
ψ(w) = (w − β)/(1 − βw) with |β| < 1, and M = ϕ(z)H2 + ψ(w)H2. Let α =
ϕ(0). Then the Beurling type theorem holds for Fw on M ª zM if and only if
|β|/(1 + |β|) ≤ |α|2.

Proof. Let L be a nonzero invariant subspace of M ª zM for Fw. By
Theorem 2.4, L = V (θ(w)H2(w)) for an inner function θ(w). Since

H2(w) = C · 1
1− βw

⊕ w − β

1− βw
H2(w),

we have

θ(w)H2(w) = C · θ(w)
1− βw

⊕ θ(w)
w − β

1− βw
H2(w).

Note that

A0 = 1, An = α (n ≥ 1), E0 = C · 1
1− βw

,

and

En = C · wn−1 w − β

1− βw
, n ≥ 1.

Then

V (θ(w)H2(w)) = C · V θ(w)
1− βw

+ θ(w)
w − β

1− βw
H2(w).

By Theorem 2.4,
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V (θ(w)H2(w))ª FwV (θ(w)H2(w)) = C · g

for some g ∈ V (θ(w)H2(w)) with g 6= 0. By Theorem 2.4 (vi), we may take
g = PL(V ∗)−1θ(w), where L = V (θ(w)H2(w)). Since

θ(w) =
〈

θ(w),

√
1− |β|2

1− βw

〉√
1− |β|2

1− βw
⊕

(
θ(w)−

〈
θ(w),

√
1− |β|2

1− βw

〉√
1− |β|2

1− βw

)

= θ(β)
1− |β|2
1− βw

⊕
(

θ(w)− θ(β)
1− |β|2
1− βw

)

∈ E0 ⊕
( ∞∑

n=1

⊕En

)
,

by Lemma 2.1 (iii) we have

(V ∗)−1θ(w) = ϕ(z)θ(β)
1− |β|2
1− βw

⊕ 1
α

(
θ(w)− θ(β)

1− |β|2
1− βw

)
.

Since

(V ∗)−1θ(w) ⊥ θ(w)
w − β

1− βw
wH2(w) = V

(
θ(w)

w − β

1− βw
wH2(w)

)
,

we may write g as

g = PL(V ∗)−1θ(w) = aV
θ(w)

1− βw
+ bθ(w)

w − β

1− βw
, a, b ∈ C. (3.1)

Hence

g = aV
θ(w)− θ(β)

1− βw
+ aV

θ(β)
1− βw

+ bθ(w)
w − β

1− βw
,

so that

g = aα
θ(w)− θ(β)

1− βw
+ aθ(β)ϕ(z)

1
1− βw

+ bθ(w)
w − β

1− βw
. (3.2)

We have
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wθ(w) =
〈

wθ(w),

√
1− |β|2

1− βw

〉√
1− |β|2

1− βw

⊕
(

wθ(w)−
〈

wθ(w),

√
1− |β|2

1− βw

〉√
1− |β|2

1− βw

)

= βθ(β)
1− |β|2
1− βw

⊕
(

wθ(w)− βθ(β)
1− |β|2
1− βw

)

∈ E0 ⊕
( ∞∑

n=1

⊕En

)
.

Hence

V (wθ(w)) = βθ(β)ϕ(z)
1− |β|2
1− βw

⊕ α

(
wθ(w)− βθ(β)

1− |β|2
1− βw

)
,

so that

V (wθ(w)) = αwθ(w) +
βθ(β)(1− |β|2)

1− βw
(ϕ(z)− α). (3.3)

By (3.2), we have

〈g, αwθ(w)〉 = a|α|2
〈

θ(w)− θ(β)
1− βw

,wθ(w)
〉

+ aθ(β)α
〈

ϕ(z)
1− βw

,wθ(w)
〉

+ bα

〈
θ(w)

w − β

1− βw
,wθ(w)

〉

= a|α|2(β − β|θ(β)|2) + a|α|2β|θ(β)|2 + bα

〈
1− |β|2
1− βw

, 1
〉

= a|α|2β + bα(1− |β|2).

and

〈
g,

βθ(β)(1− |β|2)
1− βw

(ϕ(z)− α)
〉

= aβ|θ(β)|2(1− |β|2)
〈

ϕ(z)
1− βw

,
ϕ(z)− α

1− βw

〉

= aβ|θ(β)|2(1− |β|2)1− |α|2
1− |β|2

= a(1− |α|2)β|θ(β)|2
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Since 〈g, V (wθ(w))〉 = 0, by (3.3) we have

a|α|2β + bα(1− |β|2) + a(1− |α|2)β|θ(β)|2 = 0. (3.4)

First, we study the case β = 0. Then trivially |β|/(1 + |β|) ≤ |α|2 holds. By
(3.4), we have bα = 0, so b = 0. Hence g = aV θ(w) = V (aθ(w)), a 6= 0. Therefore
(V −1g)(w)/θ(w) equals constant a and thus it is outer. Then by Theorem 2.4 (v),
the Beurling type theorem holds for Fw on M ª zM .

Next, suppose that β 6= 0. By (3.4), we have

bα(1− |β|2) + aβ
(|α|2 + (1− |α|2)|θ(β)|2) = 0.

Hence

a =
−bα(1− |β|2)

β
(|α|2 + (1− |α|2)|θ(β)|2) .

Therefore by (3.1), we have

g = b

( −α(1− |β|2)
β
(|α|2 + (1− |α|2)|θ(β)|2)V

θ(w)
1− βw

+ θ(w)
w − β

1− βw

)
.

We may assume that b = 1. Then

g =
−α(1− |β|2)

β
(|α|2 + (1− |α|2)|θ(β)|2)V

θ(w)
1− βw

+ θ(w)
w − β

1− βw
.

Hence

(V −1g)(w) =
−α(1− |β|2)

β
(|α|2 + (1− |α|2)|θ(β)|2)

θ(w)
1− βw

+
1
α

θ(w)
w − β

1− βw

=
θ(w)

α(1− βw)

(
w −

(
β +

|α|2(1− |β|2)
β
(|α|2 + (1− |α|2)|θ(β)|2)

))
.

Therefore (V −1g)(w)/θ(w) is an outer function if and only if

∣∣∣∣β +
|α|2(1− |β|2)

β
(|α|2 + (1− |α|2)|θ(β)|2)

∣∣∣∣ ≥ 1,



648 K.-J. Izuchi, K.-H. Izuchi and Y. Izuchi

and this is equivalent to

|β|2(|α|2 + (1− |α|2)|θ(β)|2) + |α|2(1− |β|2) ≥ |β|(|α|2 + (1− |α|2)|θ(β)|2).

We may rewrite this inequality as

−|β|(1− |α|2)|θ(β)|2 + |α|2 ≥ 0.

By Theorem 2.4, the Beurling type theorem holds for Fw on MªzM if and only if
the above inequality holds for every inner function θ(w). Since 0 ≤ |θ(β)|2 ≤ 1, the
Beurling type theorem holds for Fw on MªzM if and only if −|β|(1−|α|2)+|α|2 ≥
0. This is equivalent to |β|/(1 + |β|) ≤ |α|2. This completes the proof. ¤

By the proof of Theorem 3.4, we have the following.

Theorem 3.5. Let ϕ(z) be a nonconstant inner function with ϕ(0) 6= 0,
ψ(w) = (w − β)/(1 − βw) with 0 < |β| < 1, and M = ϕ(z)H2 + ψ(w)H2. Let
α = ϕ(0). Suppose that |α|2 < |β|/(1 + |β|). Let θ(w) be an inner function. Then

[
V (θ(w)H2(w))ª FwV (θ(w)H2(w))

]
MªzM

= V (θ(w)H2(w))

if and only if |θ(β)|2 ≤ |α|2/|β|(1− |α|2).

By Theorem 3.1,

[
(M ª zM)ª Fw(M ª zM)

]
MªzM

= M ª zM

if and only if either “1/2 ≤ |α|2” or “0 < |α|2 < 1/2 and |β|/(1 + |β|) ≤ |α|2”,
where α = ϕ(0) and β = ψ(0). Note that M ª zM = V (H2(w)).

Next, we shall study the case

[
V (wH2(w))ª FwV (wH2(w))

]
MªzM

= V (wH2(w)).

Theorem 3.6. Let ϕ(z) be a nonconstant inner function with ϕ(0) 6= 0,
ψ(w) = (w−β)/(1−βw) with |β| < 1, and M = ϕ(z)H2+ψ(w)H2. Let α = ϕ(0).
Then

[
V (wH2(w))ª FwV (wH2(w))

]
MªzM

= V (wH2(w))

if and only if |β|3/(1 + |β|3) ≤ |α|2.
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Proof. We have

M ª zM = C · ϕ(z)

√
1− |β|2

1− βw
+

w − β

1− βw
H2(w).

Let

e0 = ϕ(z)

√
1− |β|2

1− βw
, en = wn−1 w − β

1− βw
for n ≥ 1.

Then {en}n≥0 is an orthonormal basis for M ª zM .
Let

ẽ0 =

√
1− |β|2

1− βw
, ẽn = wn−1 w − β

1− βw
for n ≥ 1.

Then we have En = C · ẽn for every n ≥ 0. By Theorem 2.4, V (wH2(w)) is an
invariant subspace and

(M ª zM)ª V (wH2(w)) = C · (V ∗)−11.

We have

1 = 〈1, ẽ0〉ẽ0 ⊕ 〈1, ẽ1〉ẽ1 =
√

1− |β|2ẽ0 ⊕ (−βẽ1).

Note that A0 = 1 and An = α for n ≥ 1. By Lemma 2.1 (iii), we have

(V ∗)−11 =
√

1− |β|2e0 ⊕
(
− β

α
e1

)
. (3.5)

Take g ∈ V (wH2(w)) satisfying

V (wH2(w))ª FwV (wH2(w)) = C · g.

We have

F ∗wg ∈ (M ª zM)ª V (wH2(w)) = C · (V ∗)−11.

Here we have F ∗wg 6= 0. For, suppose that F ∗wg = 0. Then
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g ∈ (M ª zM)ª Fw(M ª zM) = V (H2(w))ª V (wH2(w)),

so g = 0. This is a contradiction. Hence we may assume that

F ∗wg = (V ∗)−11. (3.6)

Then we may write

g = a0e0 ⊕ a1e1 ⊕ a2e2.

Since g ⊥ (V ∗)−11, by (3.5) we have

a0

√
1− |β|2 − β

α
a1 = 0.

We have

Fwe0 = 〈Fwe0, e0〉e0 ⊕ 〈Fwe0, e1〉e1

= (1− |β|2)
〈

w

1− βw
,

1
1− βw

〉
e0 ⊕

√
1− |β|2〈ϕ(z), 1〉

〈
w

1− βw
,

w − β

1− βw

〉
e1

= βe0 ⊕ α
√

1− |β|2e1,

F ∗we0 = 〈F ∗we0, e0〉e0

=
〈
e0, βe0 ⊕ α

√
1− |β|2e1

〉
e0

= βe0,

and

F ∗we1 =
〈
F ∗we1, e0

〉
e0

=
〈
e1, βe0 ⊕ α

√
1− |β|2e1

〉
e0

= α
√

1− |β|2e0.

We have Fwen = en+1 and F ∗wen+1 = en for n ≥ 1. Then we have

F ∗wg =
(
βa0 + α

√
1− |β|2a1

)
e0 ⊕ a2e1.

By (3.5) and (3.6),
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βa0 + α
√

1− |β|2a1 =
√

1− |β|2 and a2 = −β

α
.

Therefore

a0 =
β
√

1− |β|2
|β|2 + |α|2(1− |β|2) , a1 =

α(1− |β|2)
|β|2 + |α|2(1− |β|2) , a2 = −β

α
.

As a consequence, we have

(V −1g)(w) = a0ẽ0 ⊕ a1

α
ẽ1 ⊕ a2

α
ẽ2

=
((

a0

√
1− |β|2 − β

α
a1

)
1

1− βw
+

a1

α

w

1− βw

)
⊕ a2

α
w

w − β

1− βw

=
a1

α

w

1− βw
⊕ a2

α
w

w − β

1− βw

=
w

1− βw

(
a1

α
− a2β

α
+

a2

α
w

)

=
w

1− βw

(
1− |β|2

|β|2 + |α|2(1− |β|2) +
|β|2
|α|2 −

β

|α|2 w

)
.

If β = 0, then (V −1g)(w) = w/|α|2. By Theorem 2.4 (v), we get

[
V (wH2(w))ª FwV (wH2(w))

]
MªzM

= V (wH2(w)).

Suppose that β 6= 0, then we have

(V −1g)(w) =
β

|α|2
w

1− βw

( |α|2
β

(
1− |β|2

|β|2 + |α|2(1− |β|2) +
|β|2
|α|2

)
− w

)
.

Then (V −1g)(w)/w is an outer function if and only if

|α|2
|β|

(
1− |β|2

|β|2 + |α|2(1− |β|2) +
|β|2
|α|2

)
≥ 1,

that is,

1− |β|2
|β|2 + |α|2(1− |β|2) +

|β|2
|α|2 ≥

|β|
|α|2 .
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Rewriting this, we have

|α|2(1− |β|2) + |β|2(|β|2 + |α|2(1− |β|2)) ≥ |β|(|β|2 + |α|2(1− |β|2)),

and this is equivalent to |β|3/(1 + |β|3) ≤ |α|2. By Theorem 2.4 (v), we get our
assertion. ¤

Let ϕ(z) be a nonconstant inner function with ϕ(0) 6= 0 and M = ϕ(z)H2 +
wH2. Then by Theorem 3.4, the Beurling type theorem holds for Fw on M ª zM .

Theorem 3.7. Let ϕ(z) be a nonconstant inner function with ϕ(0) 6= 0 and
M = ϕ(z)H2 + w2H2. Let

γ0 = sup{|θ(0)|(|θ′(0)| − |θ(0)|) : θ(w) is inner}.

Then γ0(1 + γ0) ≤ |ϕ(0)|2 if and only if the Beurling type theorem holds for Fw

on M ª zM .

Proof. We have

E0 = C · 1⊕C · w and En = C · wn+1 for n ≥ 1.

Let L be a nonzero invariant subspace of M ª zM for Fw. By Theorem 2.4 (i),
there is an inner function θ(w) such that L = V (θ(w)H2(w)). Let

θ(w) = (a0 + a1w)⊕
∞∑

n=2

anwn ∈
∞∑

n=0

⊕En,

where a0 = θ(0) and a1 = θ′(0). We have

V θ(w) = ϕ(z)(a0 + a1w)⊕ ϕ(0)
∞∑

n=2

anwn,

V (wθ(w)) = a0ϕ(z)w ⊕ ϕ(0)
∞∑

n=1

anwn+1,

and

V (wkθ(w)) = ϕ(0)
∞∑

n=0

anwn+k, k ≥ 2.
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Since θ(w) ⊥ wkθ(w) and wθ(w) ⊥ wkθ(w) for k ≥ 2, we have V θ(w) ⊥
V (wkθ(w)) and V (wθ(w)) ⊥ V (wkθ(w)) for k ≥ 2. These lead us that there
is a constant c ∈ C satisfying

V θ(w) + cV (wθ(w)) ⊥ FwL.

This is equivalent to V θ(w) + cV (wθ(w)) ⊥ V (wθ(w)), that is,

a0a1 + |ϕ(0)|2
∞∑

n=1

anan+1 + c

(
|a0|2 + |ϕ(0)|2

∞∑
n=1

|an|2
)

= 0.

Since ‖θ‖2 = 1,
∑∞

n=1 |an|2 = 1 − |a0|2. Since wθ(w) ⊥ θ(w), we have∑∞
n=1 anan+1 = −a0a1. Hence

c = − a0a1(1− |ϕ(0)|2)
|a0|2 + |ϕ(0)|2(1− |a0|2)

= − θ(0)θ′(0)(1− |ϕ(0)|2)
|θ(0)|2 + |ϕ(0)|2(1− |θ(0)|2) .

Write g = V θ(w) + cV (wθ(w)). Then g ∈ L ª FwL. We have (V −1g)(w) =
θ(w)(1 + cw). If |c| > 1, then (V −1g)(w)/θ(w) is not outer, and in this case by
Theorem 2.4 (v) we have [LªFwL]MªzM 6= L. If |c| ≤ 1, then (V −1g)(w)/θ(w) is
outer, so [LªFwL]MªzM = L. Therefore there is an inner function θ(w) satisfying

1 <
|θ(0)||θ′(0)|(1− |ϕ(0)|2)

|θ(0)|2 + |ϕ(0)|2(1− |θ(0)|2) (3.7)

if and only if the Beurling type theorem does not hold for Fw on M ª zM .
We may rewrite condition (3.7) as

(|θ(0)||θ′(0)|+ 1− |θ(0)|2)|ϕ(0)|2 < |θ(0)||θ′(0)| − |θ(0)|2. (3.8)

We note that 0 ≤ |θ(0)||θ′(0)| + 1 − |θ(0)|2, and |θ(0)||θ′(0)| + 1 − |θ(0)|2 = 0 if
and only if |θ(0)| = 1. But when |θ(0)| = 1, (3.8) does not hold.

So we have

0 < |θ(0)||θ′(0)|+ 1− |θ(0)|2.

Then we may rewrite (3.8) as
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|ϕ(0)|2 <
|θ(0)|(|θ′(0)| − |θ(0)|)

|θ(0)|(|θ′(0)| − |θ(0)|) + 1
≤ γ0

γ0 + 1
. (3.9)

If |ϕ(0)|2 < γ0/(γ0 + 1), then there exists an inner function θ(w) satisfying (3.9).
In this case, the Beurling type theorem does not hold for Fw on M ª zM . If
|ϕ(0)|2 ≥ γ0/(γ0 + 1), then there are no inner functions θ(w) satisfying (3.9). In
this case, the Beurling type theorem holds for Fw on M ª zM . ¤

Remark 3.8. Let θ(w) = (w − δ)/(1− δw) for 0 < δ < 1. Then θ(0) = −δ

and θ′(0) = 1− δ2. Hence

γ0 ≥ |θ(0)|(|θ′(0)| − |θ(0)|) = δ(1− δ − δ2),

so we have 5/27 ≤ γ0.
For an inner function θ(w), |θ(0)|2 + |θ′(0)|2 ≤ 1. We have

γ0 ≤ max
{
x(y − x) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0

}
=
√

2− 1
2

,

where the maximum attains at x =
√

2−√2/2 and y =
√

2 +
√

2/2. Thus we get
5/27 ≤ γ0 ≤ (

√
2−1)/2. We note that there are no inner functions θ(w) satisfying

|θ(0)| =
√

2−√2/2 and |θ′(0)| =
√

2 +
√

2/2. But we do not know the exact
value of γ0. ¤

4. Remarks.

In Sections 2 and 3, we assumed that condition (4) holds, that is, ϕ0(0) 6= 0.
In this section, we study the case ϕ0(0) = 0. Write

ϕ0(z) = z`0p0(z), `0 ≥ 1, p0(0) 6= 0.

We assume that conditions (1)–(3) hold. We use the same notations as the ones
in Section 2, so

M =
∞∑

n=0

⊕(
ϕn(z)H2(z)

)⊗ (
ψn(w)

(
H2(w)ª ξn(w)H2(w)

))
.

First, we assume that ζn(0) 6= 0 for every n ≥ 0. Since
∏n−1

j=0 ζj(z) =
ϕ0(z)/ϕn(z), we may write ϕn(z) = z`0pn(z), pn(0) 6= 0. We have p0(z) =
pn(z)

∏n−1
j=0 ζj(z). Let
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M̃ =
∞∑

n=0

⊕(
pn(z)H2(z)

)⊗ (
ψn(w)

(
H2(w)ª ξn(w)H2(w)

))
.

Then we have

z`0M̃ = M and z`0(M̃ ª zM̃ ) = M ª zM .

If p0(z) = λ0 for λ0 ∈ C with |λ0| = 1, we have pn(z) = λn for λn ∈ C with |λn| =
1. In this case, we have M̃ = H2 and M = z`0H2. Since M ª zM = z`0H2(w),
the Beurling type theorem holds for Fw. So, we assume that p0(z) is nonconstant.
Then {pn(z)}n≥0 satisfies conditions (2) and (4), and the Beurling type theorem
holds for Fw on M ª zM if and only if the Beurling type theorem holds for Fw

on M̃ ª zM̃ .
Next we assume that there exists a nonnegative integer n0 such that ζn0(0) = 0

and ζn(0) 6= 0 for every n with 0 ≤ n ≤ n0−1. Hence A0 = 1, An =
∏n−1

j=0 ζj(0) 6= 0
for 1 ≤ n ≤ n0, and An = 0 for n ≥ n0 + 1. Let

K =
n0∑

n=0

⊕ϕn(z)ψn(w)
(
H2(w)ª ξn(w)H2(w)

)
=

n0∑
n=0

⊕ϕn(z)En

and

K = H2(w)ª ψn0+1(w)H2(w) =
n0∑

n=0

⊕En.

Then K ⊂ M ª zM .
Let 0 ≤ n ≤ n0 and j ≥ n0 + 1. Then we may write

ϕn(z) = z`0qn(z), qn(0) 6= 0

and

ϕj(z) = z`j qj(z), 0 ≤ `j+1 ≤ `j < `0, qj(0) 6= 0.

Since ϕn(z)/ϕj(z) is inner, qn(z)/qj(z) is also inner and we have

〈ϕn(z), ϕj(z)〉 =
〈

z`0−`j
qn(z)
qj(z)

, 1
〉

= 0.
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This shows that ϕn(z)H2(w) ⊥ ϕj(z)H2(w). Hence

wϕn(z)En ⊥
∞∑

j=n0+1

⊕ϕj(z)Ej .

Since M ª zM =
∑∞

n=0⊕ϕn(z)En, we have FwK ⊂ K . Let Sw be the com-
pression operator of Tw on K, that is Sw = PKTw|K . For a subset E of K , let
[E]K be the closed linear span of {F k

wE : k ≥ 0} in K . Similarly, for E ⊂ K let
[E]K be the closed linear span of {Sk

wE : k ≥ 0} in K. We define the operator
Ṽ : K → K by Ṽ = V |K . As in Section 2, we have the following assertions.

Proposition 4.1.

( i ) Ṽ Sw = FwṼ on K.
( ii ) FwK is dense in K if and only if 1 /∈ K.

It is known that f(w) is a cyclic vector for Sw in K if and only if the greatest
common divisor of the inner factor of f(w) and ψn0+1(w) equals to 1 (see [13,
p. 82]).

Proposition 4.2. Let L be a nonzero invariant subspace of K for Fw.
Then there is an inner function θ(w) such that ψn0+1(w)/θ(w) is inner and

L = Ṽ
(
θ(w)H2(w)ª ψn0+1(w)H2(w)

)
.

Moreover FwL is dense in L if and only if (ψn0+1/θ)(0) 6= 0.

Note that θ(w)H2(w)ªψn0+1(w)H2(w) is an invariant subspace of K for Sw.
The following is the main result in this section.

Theorem 4.3. The Beurling type theorem holds for Fw on K if and only
if ψn0+1(w) = cwk for some k ≥ n0 + 1 and c ∈ C with |c| = 1.

Proof. Suppose that ψn0+1(w) 6= cw` for every ` ≥ 1 and c ∈ C with
|c| = 1. Write ψn0+1(w) = wkθ(w), where k ≥ 0 and θ(w) is a nonconstant inner
function with θ(0) 6= 0. Let

L = Ṽ
(
wkH2(w)ª ψn0+1(w)H2(w)

)
.

By Proposition 4.2, L is an invariant subspace of K for Fw and FwL is dense in
L. Hence [Lª FwL]K = {0} 6= L. Thus the Beurling type theorem does not hold
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for Fw on K . Note that if ψn0+1(w) = cwk, by condition (2) we have k ≥ n0 + 1.
Suppose that ψn0+1(w) = cwk for some k ≥ n0 + 1 and c ∈ C with |c| = 1.

Then ψj(w) = cjw
kj for some kj and cj ∈ C with |cj | = 1, 0 ≤ j ≤ n0 + 1,

satisfying

k0 = 0 < k1 < k2 < · · · < kn0+1 = k.

Let L be a nonzero invariant subspace of K for Fw. By Proposition 4.2, there is
an invariant subspace L1 of K for Sw satisfying L = Ṽ L1. Since K = H2(w) ª
wkH2(w), we have

L1 = C · wm ⊕C · wm+1 ⊕ · · · ⊕C · wk−1, 0 ≤ m ≤ k − 1.

Since L1 ª SwL1 = C · wm, we have Ṽ L1 ª FwṼ L1 = C · Ṽ wm. Since [L1 ª
SwL1]K = L1, we have [Ṽ L1 ª FwṼ L1]K = Ṽ L1. Thus the Beurling theorem
holds. ¤

Remark 4.4. Let q(w) be a nonconstant inner function and K = H2(w)ª
q(w)H2(w). Let Sw be the compression operator on K. By the proof of Theorem
4.3, we see that the Beurling type theorem holds for Sw on K if and only if
q(w) = cwk for some k ≥ 1 and c ∈ C with |c| = 1.
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