Wandering subspaces and the Beurling type theorem, III

By Kei-Ji IZUCHI, Kou-Hei IZUCHI, and Yuko IZUCHI

(Received Sep. 6, 2010) (Revised Nov. 12, 2010)

Abstract. Let $H^2(\mathbf{D}^2)$ be the Hardy space over the bidisk. Let $\{\varphi_n(z)\}_{n\geq 0}$ and $\{\psi_n(w)\}_{n\geq 0}$ be sequences of one variable inner functions satisfying some additinal conditions. Associated with them, we have a Rudin type invariant subspace \mathscr{M} of $H^2(\mathbf{D}^2)$. We study the Beurling type theorem for the fringe operator F_w on $\mathscr{M} \ominus z\mathscr{M}$.

1. Introduction.

Let T be a bounded linear operator on a Hilbert space H. For a subset E of H, we denote by $[E]_H$ the smallest invariant subspace of H for T containing E. Let M be an invariant subspace of H for T. We denote by $M \ominus TM$ the orthogonal complement of TM in M. The space $M \ominus TM$ is called a wandering subspace of M for the operator T. We have $[M \ominus TM]_H \subset M$. We say that the Beurling type theorem for T if $[M \ominus TM]_H = M$ for every invariant subspace M of H for T. Our basic problem is to find operators T on H for which the Beurling type theorem holds.

Let D be the open unit disk in the complex plane C. We denote by $H^2(D)$ the Hardy space on D. A function $\varphi(z)$ in $H^2(D)$ is called inner if $|\varphi(z)| = 1$ a.e. on ∂D . Let T_z be the multiplication operator on $H^2(D)$ by the coordinate function z. For every nonzero invariant subspaces M of $H^2(D)$ for T_z , the Beurling theorem [2] says that $M \ominus T_z M = C \cdot \varphi(z)$ for an inner function $\varphi(z)$ and $M = [M \ominus T_z M]_{H^2(D)}$ (see also [5], [7]). For a nonzero closed invariant subspace M of the Dirichlet shift T_z on the Dirichlet space \mathscr{D} , Richter showed that dim $(M \ominus T_z M) = 1$ and the Beurling type theorem holds for the Dirichlet shift in [15]. Aleman, Richter, and Sundberg proved that the Beurling type theorem also holds for the Bergman shift on the Bergman space $L^2_a(D)$ in [1]. In [19], Shimorin showed the following theorem.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A15; Secondary 32A35, 47B35.

Key Words and Phrases. Beurling type theorem, wandering subspace, invariant subspace, fringe operator.

The first author was partially supported by Grant-in-Aid for Scientific Research (No. 21540166), Japan Society for the Promotion of Science.

SHIMORIN'S THEOREM. If $T: H \to H$ satisfies the following conditions

(a) $||Tx + y||^2 \le 2(||x||^2 + ||Ty||^2), \quad x, y \in H,$ (b) $O(T^n H_{x^n} \ge 0)$ (c)

(b) $\bigcap \{T^n H : n \ge 0\} = \{0\},\$

then the Beurling type theorem holds for T.

As an application of this theorem, Shimorin gave a simpler proof of the Aleman, Richter, and Sundberg theorem (see also [6]). Later, different proofs of the the Beurling type theorem are given in [12], [14], [20]. Recently, the authors [8] proved the following theorem.

THEOREM A. If $T: H \to H$ satisfies the following conditions

(i)
$$||Tx||^2 + ||T^{*2}Tx||^2 \le 2||T^*Tx||^2$$
, $x \in H$,

(ii) T is bounded below,

(iii) $||T^{*n}x|| \to 0$ as $n \to \infty$ for every $x \in H$,

then the Beurling type theorem holds for T.

Also it is pointed out that conditions (a) and (b) in Shimorin's theorem are equivalent to conditions (i)–(iii) in Theorem A.

Let $H^2 := H^2(\mathbf{D}^2)$ be the Hardy space over the bidisk \mathbf{D}^2 . We identify a function in H^2 with its boundary function on the distinguished boundary $(\partial \mathbf{D})^2$ of \mathbf{D}^2 , so we think of H^2 as a closed subspace of the Lebesgue space $L^2 := L^2((\partial \mathbf{D})^2)$. We use z, w as variables in \mathbf{D}^2 . We denote by $H^2(z)$ the z-variable Hardy space, and we think of $H^2(z)$ as a closed subspace of H^2 . Then H^2 coincides with the tensor product $H^2(z) \otimes H^2(w)$. Let T_z, T_w be multiplication operators on H^2 by z and w. A closed subspace M of H^2 is called invariant if $T_z M \subset M$ and $T_w M$ $\subset M$. For a subset E of M, we denote by $[E]_{H^2}$ the smallest invariant subspace containing E. For a subspace E of H^2 , we denote by P_E the orthogonal projection from L^2 onto E. See books [3], [16] for the study of the Hardy space H^2 over \mathbf{D}^2 .

Let M be an invariant subspace of H^2 . Write $R_z = T_z|_M$ and $R_w = T_w|_M$, the operators on M. Since R_z is an isometry on M, by the Wold decomposition theorem we have

$$M = \sum_{n=0}^{\infty} \oplus (M \ominus zM) z^n.$$

So a lot of information of an invariant subspace M are considered to be encoded in those of $M \ominus zM$. So to study the structure of invariant subspaces M of H^2 , $M \ominus zM$ is one of the most important spaces. Note that $P_{M\ominus zM} = I - R_z R_z^*$. To study $M \ominus zM$, Yang [21] defined the fringe operator F_w on $M \ominus zM$ by

$$F_w f = P_{M \ominus zM} R_w f, \quad f \in M \ominus zM,$$

and studied the properties of F_w (see [21], [22], [23]).

Let $M_{\varphi} := [z - \varphi(w)]_{H^2}$ for a nonconstant inner function $\varphi(w)$. In the previous paper [9], as applications of Theorem A we studied the Beurling type theorem for the fringe operator F_w on $M_{\varphi} \ominus z M_{\varphi}$ and for the compression operator S_z on $H^2 \ominus M_{\varphi}$, respectively.

In this paper, we shall study invariant subspaces of H^2 based on inner sequences. Let $\{\varphi_n(z)\}_{n\geq 0}$ and $\{\psi_n(w)\}_{n\geq 0}$ be sequences of inner functions such that $\varphi_n(z)/\varphi_{n+1}(z)$ and $\psi_{n+1}(w)/\psi_n(w)$ are inner functions for every $n \geq 0$. Moreover we assume that $\bigcap_{n=0}^{\infty} \psi_n(w)H^2(w) = \{0\}$. Let

$$\mathscr{M} = \sum_{n=0}^{\infty} \oplus \left(\varphi_n(z)H^2(z)\right) \otimes \left(\psi_n(w)H^2(w) \ominus \psi_{n+1}(w)H^2(w)\right).$$

Then \mathcal{M} is an invariant subspace of H^2 . This type of invariant subspaces of H^2 have been studied in [4], [16], [17], [18]. We have

$$\mathscr{M} \ominus z\mathscr{M} = \sum_{n=0}^{\infty} \oplus \varphi_n(z) \big(\psi_n(w) H^2(w) \ominus \psi_{n+1}(w) H^2(w) \big)$$

We study the Beurling type theorem for the fringe operator F_w on $\mathcal{M} \ominus z\mathcal{M}$. Without loss of generality, we assume that $\psi_0(w) = 1$. Our strategy of the study is to define an invertible bounded linear operator $\mathbf{V} : H^2(w) \to \mathcal{M} \ominus z\mathcal{M}$ satisfying $\mathbf{V}T_w = F_w \mathbf{V}$ on $H^2(w)$. Using this operator, we study the Beurling type theorem for F_w on $\mathcal{M} \ominus z\mathcal{M}$. In Section 2, we shall study the case $\varphi_0(0) \neq 0$, and in Section 4 we shall study the case $\varphi_0(0) = 0$.

For nonconstant inner functions $\varphi(z)$ and $\psi(w)$, let

$$M = \varphi(z)H^2 + \psi(w)H^2.$$

Then M is an invariant subspace of H^2 and a special case of \mathcal{M} . Recently these type of M are studied in [10], [23]. In Section 3, we study the Beurling type theorem for F_w on $M \ominus zM$. When

$$\psi(w) = \frac{w - \beta}{1 - \overline{\beta}w}, \quad |\beta| < 1,$$

we shall show that the Beurling type theorem holds for F_w on $M \ominus zM$ if and only if $|\beta|/(1+|\beta|) \leq |\alpha|^2$, where $\alpha = \varphi(0) \neq 0$.

2. Invariant subspaces based on inner sequences.

Let $\{\varphi_n(z)\}_{n\geq 0}$ and $\{\psi_n(w)\}_{n\geq 0}$ be sequences of inner functions satisfying the following conditions;

- (1) $\psi_0(w) = 1$,
- (2) $(\varphi_n(z))/(\varphi_{n+1}(z))$ is an inner function and $(\psi_{n+1}(w))/(\psi_n(w))$ is a nonconstant inner function for every $n \ge 0$,
- (3) $\bigcap_{n=0}^{\infty} \psi_n(w) H^2(w) = \{0\}.$

Write

$$\frac{\varphi_n(z)}{\varphi_{n+1}(z)} = \zeta_n(z) \quad \text{and} \quad \frac{\psi_{n+1}(w)}{\psi_n(w)} = \xi_n(w).$$

Let

$$\begin{split} \mathscr{M} &= \sum_{n=0}^{\infty} \oplus \left(\varphi_n(z) H^2(z) \right) \otimes \left(\psi_n(w) H^2(w) \ominus \psi_{n+1}(w) H^2(w) \right) \\ &= \sum_{n=0}^{\infty} \oplus \left(\varphi_n(z) H^2(z) \right) \otimes \left(\psi_n(w) \left(H^2(w) \ominus \xi_n(w) H^2(w) \right) \right). \end{split}$$

By conditions (2) and (3), it is not difficult to see that $\mathscr M$ is an invariant subspace of H^2 and

$$\mathcal{M} \ominus z\mathcal{M} = \sum_{n=0}^{\infty} \oplus \varphi_n(z)\psi_n(w) (H^2(w) \ominus \xi_n(w)H^2(w)).$$

By (1) and (3), we have

$$H^2(w) = \sum_{n=0}^{\infty} \oplus \psi_n(w) \left(H^2(w) \ominus \xi_n(w) H^2(w) \right).$$

For each $n \ge 0$, we write

$$E_n = \psi_n(w) \left(H^2(w) \ominus \xi_n(w) H^2(w) \right).$$

Then

The Beurling type theorem

$$H^2(w) = \sum_{n=0}^{\infty} \oplus E_n$$
 and $\mathcal{M} \ominus z\mathcal{M} = \sum_{n=0}^{\infty} \oplus \varphi_n(z)E_n$.

Moreover in this and next sections, we assume that

(4) $0 < |\varphi_0(0)| < 1.$

Let $A_0 = 1$, and for each positive integer n let

$$A_n = \prod_{j=0}^{n-1} \zeta_j(0).$$

By conditions (2) and (4), $\varphi_n(0) \neq 0$, $\zeta_n(0) \neq 0$, and $A_n \neq 0$ for every $n \ge 0$. We have

$$A_n = \prod_{j=0}^{n-1} \frac{\varphi_j(0)}{\varphi_{j+1}(0)} = \frac{\varphi_0(0)}{\varphi_n(0)},$$

so we get $0 < |\varphi_0(0)| \le |A_{n+1}| \le |A_n| \le |A_0| = 1$. Note that $|\zeta_n(0)| \to 1$ as $n \to \infty$. We define an operator $V: H^2(w) \to \mathscr{M} \ominus z\mathscr{M}$ by

$$V(g_n(w)) = A_n \varphi_n(z) g_n(w), \quad g_n(w) \in E_n.$$

Then V is an invertible bounded linear operator.

LEMMA 2.1. Let

$$g = \sum_{n=0}^{\infty} \oplus \varphi_n(z) g_n(w) \in \sum_{n=0}^{\infty} \oplus \varphi_n(z) E_n = \mathscr{M} \ominus z \mathscr{M}$$

and

$$f(w) = \sum_{n=0}^{\infty} \oplus f_n(w) \in \sum_{n=0}^{\infty} \oplus E_n = H^2(w).$$

Then we have the following.

 $\begin{array}{l} (\ \mathrm{i} \) \ \ V^*g = \sum_{n=0}^{\infty} \oplus \overline{A}_n g_n(w) \in H^2(w). \\ (\ \mathrm{ii} \) \ \ V^{-1}g = \sum_{n=0}^{\infty} \oplus A_n^{-1}g_n(w) \in H^2(w). \\ (\ \mathrm{iii} \) \ \ (V^*)^{-1}f(w) = \sum_{n=0}^{\infty} \oplus \overline{A}_n^{(-1)}\varphi_n(z)f_n(w) \in \mathscr{M} \ominus z\mathscr{M}. \end{array}$

(iv)
$$(V^*V)^{-1}f(w) = \sum_{n=0}^{\infty} \oplus |A_n|^{-2}f_n(w) \in H^2(w).$$

PROOF. (i) We have

$$\begin{split} \langle \mathbf{V}^* g, f(w) \rangle &= \langle g, \mathbf{V} f(w) \rangle \\ &= \left\langle \sum_{n=0}^{\infty} \oplus \varphi_n(z) g_n(w), \sum_{n=0}^{\infty} \oplus A_n \varphi_n(z) f_n(w) \right\rangle \\ &= \sum_{n=0}^{\infty} \langle \overline{A}_n g_n(w), f_n(w) \rangle \\ &= \left\langle \sum_{n=0}^{\infty} \oplus \overline{A}_n g_n(w), \sum_{n=0}^{\infty} \oplus f_n(w) \right\rangle. \end{split}$$

Thus we get (i).

It is easy to get (ii)–(iv) from (i) and the definition of V.

The following is a key theorem in this paper.

THEOREM 2.2. $VT_w = F_w V$ on $H^2(w)$.

PROOF. Let k be a nonnegative integer. We have

$$\sum_{n=k}^{\infty} \oplus E_n = \psi_k(w) H^2(w),$$

so $\sum_{n=k}^{\infty} \oplus E_n$ is an invariant subspace of $H^2(w)$ for T_w . Let $f(w) \in E_k$. Then we may write wf(w) as

$$wf(w) = \sum_{n=k}^{\infty} \oplus f_n(w) \in \sum_{n=k}^{\infty} \oplus E_n.$$

Hence

$$VT_w f(w) = \sum_{n=k}^{\infty} \oplus A_n \varphi_n(z) f_n(w).$$

We have also

$$\begin{split} F_{w}Vf(w) &= F_{w}A_{k}\varphi_{k}(z)f(w) \\ &= A_{k}P_{\mathscr{M}\ominus z\mathscr{M}}\left(\varphi_{k}(z)\sum_{n=k}^{\infty}\oplus f_{n}(w)\right) \\ &= A_{k}\sum_{n=k}^{\infty}\oplus P_{\mathscr{M}\ominus z\mathscr{M}}(\varphi_{k}(z)f_{n}(w)) \\ &= A_{k}\sum_{n=k}^{\infty}\oplus \langle\varphi_{k}(z)f_{n}(w),\varphi_{n}(z)f_{n}(w)\rangle\frac{\varphi_{n}(z)f_{n}(w)}{\|f_{n}\|^{2}} \\ &= A_{k}\sum_{n=k}^{\infty}\oplus \langle\varphi_{k}(z),\varphi_{n}(z)\rangle\varphi_{n}(z)f_{n}(w) \\ &= A_{k}\varphi_{k}(z)f_{k}(w)\oplus\sum_{n=k+1}^{\infty}\oplus A_{k}\left\langle\frac{\varphi_{k}}{\varphi_{k+1}}\frac{\varphi_{k+1}}{\varphi_{k+2}}\cdots\frac{\varphi_{n-1}}{\varphi_{n}},1\right\rangle\varphi_{n}(z)f_{n}(w) \\ &= A_{k}\varphi_{k}(z)f_{k}(w)\oplus\sum_{n=k+1}^{\infty}\oplus \left(\prod_{j=0}^{k-1}\zeta_{j}(0)\right)\left(\prod_{j=k}^{n-1}\zeta_{j}(0)\right)\varphi_{n}(z)f_{n}(w) \\ &= \sum_{n=k}^{\infty}\oplus A_{n}\varphi_{n}(z)f_{n}(w). \end{split}$$

Therefore $VT_w f(w) = F_w V f(w)$ for every f(w) in E_k and $k \ge 0$. This shows the assertion.

The following corollary follows directly from Theorem 2.2.

COROLLARY 2.3. For every inner function $\theta(w)$, $V(\theta(w)H^2(w))$ is an invariant subspace of $\mathcal{M} \ominus z\mathcal{M}$ for F_w .

THEOREM 2.4. Let L be a nonzero invariant subspace of $\mathcal{M} \ominus z\mathcal{M}$ for F_w . Then we have the following.

- (i) $L = V(\theta(w)H^2(w))$ for an inner function $\theta(w)$.
- (ii) $V\theta(w)$ is a cyclic vector of L for F_w .
- (iii) $\dim(L \ominus F_w L) = 1.$
- (iv) $(\mathscr{M} \ominus z\mathscr{M}) \ominus L = (V^*)^{-1} (H^2(w) \ominus \theta(w) H^2(w)).$
- (v) Let $g \in L$ satisfy $L \ominus F_w L = \mathbf{C} \cdot g$. Then $[L \ominus F_w L]_{\mathcal{M} \ominus z\mathcal{M}} = L$ if and only if $(\mathbf{V}^{-1}g)/\theta(w)$ is an outer function. If $(\mathbf{V}^{-1}g)/\theta(w)$ is not outer, let $\theta_1(w)$ be its inner factor, then

$$\boldsymbol{V}((\theta\theta_1)(w)H^2(w)) = [L \ominus F_w L]_{\mathcal{M} \ominus z\mathcal{M}}.$$

(vi) $g = P_L(\mathbf{V}^*)^{-1}\theta(w)$ for g in (v).

Proof.

(i) By Theorem 2.2, we have $\mathbf{V}T_w\mathbf{V}^{-1}L = F_wL \subset L$. Then $T_w\mathbf{V}^{-1}L \subset \mathbf{V}^{-1}L$ and $\mathbf{V}^{-1}L$ is a nonzero closed subspace of $H^2(w)$. By the Beurling theorem, $\mathbf{V}^{-1}L = \theta(w)H^2(w)$ for an inner function $\theta(w)$. Thus we get $L = \mathbf{V}(\theta(w)H^2(w))$.

(ii) By Theorem 2.2, $V(T_w^k \theta(w)) = F_w^k V(\theta(w))$ for every $k \ge 0$. Since $\theta(w)$ is a cyclic vector in $\theta(w)H^2(w)$ for T_w , by (i) we get (ii).

(iii) By (i) and Theorem 2.2,

$$F_wL = F_w \boldsymbol{V}(\theta(w)H^2(w)) = \boldsymbol{V}T_w(\theta(w)H^2(w)) = \boldsymbol{V}(w\theta(w)H^2(w)).$$

Since $V: H^2(w) \to \mathcal{M} \ominus z\mathcal{M}$ is invertible,

$$F_w L \subsetneqq \boldsymbol{C} \cdot \boldsymbol{V}\theta(w) + \boldsymbol{V}(w\theta(w)H^2(w)) = L$$

and $F_w L$ is closed. Thus we get (iii).

(iv) Let $f \in \mathcal{M} \ominus z\mathcal{M}$. By (i), $f \perp L$ if and only if $V^*f \perp \theta(w)H^2(w)$. Hence

$$V^*((\mathcal{M} \ominus z\mathcal{M}) \ominus L) = H^2(w) \ominus \theta(w)H^2(w).$$

Thus we get the assertion.

(v) By Theorem 2.2, $VT_w^k V^{-1} = F_w^k$ for every $k \ge 0$. So $[L \ominus F_w L]_{\mathcal{M} \ominus z\mathcal{M}} = L$ if and only if the linear span of $\{w^k (V^{-1}g)(w) : k \ge 0\}$ is dense in $\theta(w)H^2(w)$. Thus we get the first assertion.

Suppose that $(V^{-1}g)(w)/\theta(w)$ is not outer. Let $\theta_1(w)$ be its inner factor. By the above argument, we have

$$V((heta heta_1)(w)H^2(w)) = [L \ominus F_w L]_{\mathcal{M}\ominus z\mathcal{M}}.$$

(vi) We have $(\mathbf{V}^*)^{-1}\theta(w) \perp F_w L$. For, by (i) we have

$$\left\langle (\boldsymbol{V}^*)^{-1}\boldsymbol{\theta}(w), F_wh\right\rangle = \left\langle \boldsymbol{\theta}(w), \boldsymbol{V}^{-1}F_wh\right\rangle = \left\langle \boldsymbol{\theta}(w), T_w\boldsymbol{V}^{-1}h\right\rangle = 0$$

for every $h \in L$. Also we have $(\mathbf{V}^*)^{-1}\theta(w) \not\perp L$. For, by (i) we have $\theta(w) \not\perp \theta(w)H^2(w) = \mathbf{V}^{-1}L$. Hence by (iii), we may take $g(w) = P_L(\mathbf{V}^*)^{-1}\theta(w)$. \Box

For arbitrary inner function $\theta(w)$, it seems difficult to compute $g = P_L(\mathbf{V}^*)^{-1}\theta(w)$. But for some special cases, we may compute it. For each $k \ge 0$, let

The Beurling type theorem

$$\mathscr{M}_{k} = \sum_{n=k}^{\infty} \oplus \left(\varphi_{n}(z)H^{2}(z)\right) \otimes \left(\psi_{n}(w)\left(H^{2}(w) \ominus \xi_{n}(w)H^{2}(w)\right)\right)$$

Then we have

$$\mathcal{M}_k \ominus z\mathcal{M}_k = \sum_{n=k}^{\infty} \oplus \varphi_n(z) E_n = V(\psi_k(w) H^2(w)).$$

Hence by Corollary 2.3, $\mathcal{M}_k \ominus z\mathcal{M}_k$ is an invariant subspace of $\mathcal{M} \ominus z\mathcal{M}$ for F_w , and by Theorem 2.4 (ii) $\mathbf{V}\psi_k(w)$ is a cyclic vector of $\mathcal{M}_k \ominus z\mathcal{M}_k$ for F_w .

COROLLARY 2.5.

$$(\mathcal{M}_k \ominus z\mathcal{M}_k) \ominus F_w(\mathcal{M}_k \ominus z\mathcal{M}_k) = \mathbf{C} \cdot (\mathbf{V}^*)^{-1} \psi_k(w)$$

for every $k \geq 0$.

PROOF. Write

$$\psi_k(w) = \sum_{n=k}^{\infty} \oplus f_n(w) \in \sum_{n=k}^{\infty} \oplus E_n.$$

By Lemma 2.1 (iii),

$$(\boldsymbol{V}^*)^{-1}\psi_k(w) = \sum_{n=k}^{\infty} \oplus \overline{A}_n^{(-1)}\varphi_n(z)f_n(w) \in \mathscr{M}_k \ominus z\mathscr{M}_k.$$

By Theorem 2.4 (vi),

$$(\mathscr{M}_k \ominus z\mathscr{M}_k) \ominus F_w(\mathscr{M}_k \ominus z\mathscr{M}_k) = \mathbf{C} \cdot (\mathbf{V}^*)^{-1} \psi_k(w).$$

COROLLARY 2.6. For each $k \geq 0$, $((V^*V)^{-1}\psi_k(w))/\psi_k(w)$ is an outer function if and only if

$$\left[\left(\mathscr{M}_k\ominus z\mathscr{M}_k\right)\ominus F_w(\mathscr{M}_k\ominus z\mathscr{M}_k)\right]_{\mathscr{M}\ominus z\mathscr{M}}=\mathscr{M}_k\ominus z\mathscr{M}_k.$$

PROOF. Since $(\mathbf{V}^*\mathbf{V})^{-1}\psi_k(w) = \mathbf{V}^{-1}(\mathbf{V}^*)^{-1}\psi_k(w)$, by Theorem 2.4 (v) and Corollary 2.5 we get the assertion.

COROLLARY 2.7. Let $k \ge 0$. If $\xi_k(0) = 0$, then

$$\left[\left(\mathscr{M}_k\ominus z\mathscr{M}_k\right)\ominus F_w(\mathscr{M}_k\ominus z\mathscr{M}_k)\right]_{\mathscr{M}\ominus z\mathscr{M}}=\mathscr{M}_k\ominus z\mathscr{M}_k.$$

PROOF. We have $\psi_{k+1}(w) = \psi_k(w)\xi_k(w)$. Since $\xi_k(0) = 0$, we have $\psi_k(w) \in E_k$. So we have $(\mathbf{V}^*)^{-1}\psi_k(w) = \overline{A}_k^{(-1)}\varphi_k(z)\psi_k(w)$. Moreover $\mathbf{V}^{-1}(\mathbf{V}^*)^{-1}\psi_k(w) = |A_k|^{-2}\psi_k(w)$. Thus $(\mathbf{V}^*\mathbf{V})^{-1}\psi_k(w)/\psi_k(w) = |A_k|^{-2}$ is outer. Then by Corollary 2.6, we get the assertion.

We note that

$$(\mathcal{M} \ominus z\mathcal{M}) \ominus F_w(\mathcal{M} \ominus z\mathcal{M}) = \mathcal{M} \ominus (z\mathcal{M} + w\mathcal{M}).$$

COROLLARY 2.8. If $(V^*V)^{-1}1$ is not an outer function, then

$$[\mathscr{M} \ominus (z\mathscr{M} + w\mathscr{M})]_{\mathscr{M}} \neq \mathscr{M}.$$

PROOF. By Corollary 2.6,

$$\left[(\mathscr{M} \ominus z\mathscr{M}) \ominus F_w(\mathscr{M} \ominus z\mathscr{M}) \right]_{\mathscr{M} \ominus z\mathscr{M}} \subsetneqq \mathscr{M} \ominus z\mathscr{M}.$$

Hence

$$[\mathscr{M} \ominus (z\mathscr{M} + w\mathscr{M})]_{\mathscr{M} \ominus z\mathscr{M}} \subsetneqq \mathscr{M} \ominus z\mathscr{M}.$$

Therefore

$$(\mathcal{M} \ominus z\mathcal{M}) \ominus [\mathcal{M} \ominus (z\mathcal{M} + w\mathcal{M})]_{\mathcal{M} \ominus z\mathcal{M}} \perp [\mathcal{M} \ominus (z\mathcal{M} + w\mathcal{M})]_{\mathcal{M}}.$$

Thus we get the assertion.

The converse of Corollary 2.8 does not hold, see Theorem 3.1 (v).

THEOREM 2.9. Suppose that $\xi_{k+1}(0) = 0$ for some $k \ge 0$. Let $\alpha = \zeta_k(0)$ and $\beta = \xi_k(0)$. Then we have the following.

(i) If $1/2 \le |\alpha|^2 \le 1$, then

$$\left[\left(\mathscr{M}_k \ominus z\mathscr{M}_k\right) \ominus F_w(\mathscr{M}_k \ominus z\mathscr{M}_k)\right]_{\mathscr{M} \ominus z\mathscr{M}} = \mathscr{M}_k \ominus z\mathscr{M}_k.$$

(ii) If $0 < |\alpha|^2 < 1/2$ and $|\beta|/(1+|\beta|) \le |\alpha|^2$, then

$$\left[\left(\mathscr{M}_k\ominus z\mathscr{M}_k\right)\ominus F_w(\mathscr{M}_k\ominus z\mathscr{M}_k)\right]_{\mathscr{M}\ominus z\mathscr{M}}=\mathscr{M}_k\ominus z\mathscr{M}_k$$

The Beurling type theorem

(iii) If $0 < |\alpha|^2 < 1/2$ and $|\alpha|^2 < |\beta|/(1+|\beta|)$, then

$$\left[(\mathcal{M}_k \ominus z \mathcal{M}_k) \ominus F_w (\mathcal{M}_k \ominus z \mathcal{M}_k) \right]_{\mathcal{M} \ominus z \mathcal{M}} \neq \mathcal{M}_k \ominus z \mathcal{M}_k,$$

so in this case the Beurling type theorem does not hold for F_w on $\mathscr{M} \ominus z\mathscr{M}$.

PROOF. Recall that $E_k = \psi_k(w) (H^2(w) \ominus \xi_k(w) H^2(w))$ for each $k \ge 0$. Since $\xi_{k+1}(0) = 0$, $\psi_k(w) \perp \psi_{k+2}(w) H^2(w)$ and $\psi_{k+1}(w) \in E_{k+1}$, so we have

$$\psi_k(w) = \psi_k(w) \left(1 - \overline{\xi_k(0)} \xi_k(w) \right) \oplus \overline{\xi_k(0)} \psi_k(w) \xi_k(w)$$
$$= \psi_k(w) \left(1 - \overline{\xi_k(0)} \xi_k(w) \right) \oplus \overline{\xi_k(0)} \psi_{k+1}(w)$$
$$\in E_k \oplus E_{k+1}.$$

Note that $A_{k+1} = A_k \zeta_k(0) = \alpha A_k$. By Lemma 2.1 (iv),

$$(\mathbf{V}^*\mathbf{V})^{-1}\psi_k(w) = \frac{1}{|A_k|^2}\psi_k(w)\left(1 - \overline{\xi_k(0)}\xi_k(w)\right) \oplus \frac{\overline{\xi_k(0)}\psi_k(w)\xi_k(w)}{|\alpha|^2|A_k|^2}$$
$$= \frac{\psi_k(w)}{|A_k|^2}\left(1 + \frac{1 - |\alpha|^2}{|\alpha|^2}\overline{\beta}\xi_k(w)\right).$$

Hence $((\mathbf{V}^*\mathbf{V})^{-1}\psi_k(w))/\psi_k(w)$ is an outer function if and only if

$$\frac{1-|\alpha|^2}{|\alpha|^2}|\beta| \leq 1, \quad \text{that is,} \quad \frac{|\beta|}{1+|\beta|} \leq |\alpha|^2.$$

Therefore if $1/2 \leq |\alpha|^2 \leq 1$, then $(1-|\alpha|^2)/|\alpha|^2 \leq 1$, so $((\boldsymbol{V^*V})^{-1}\psi_k(w))/\psi_k(w)$ is outer. If $0 < |\alpha|^2 < 1/2$ and $|\beta|/(1+|\beta|) \leq |\alpha|^2$, then $((\boldsymbol{V^*V})^{-1}\psi_k(w))/\psi_k(w)$ is outer. If $0 < |\alpha|^2 < 1/2$ and $|\alpha|^2 < |\beta|/(1+|\beta|)$, then $((\boldsymbol{V^*V})^{-1}\psi_k(w))/\psi_k(w)$ is not outer. By Corollary 2.6, we get the assertion.

THEOREM 2.10. Suppose that $\xi_{k+1}(0) = 0$, $0 < |\zeta_k(0)|^2 < 1/2$, and $\xi_k(w)$ is not a finite Blaschke product for some $k \ge 0$. Then the Beurling type theorem does not hold for F_w on $\mathcal{M} \ominus z\mathcal{M}$.

PROOF. Write $\alpha = \zeta_k(0)$. Then $0 < |\alpha|^2 < 1/2$, so $|\alpha|^2/(1-|\alpha|^2) < 1$. By our assumption, there is an inner subfactor $\eta_0(w)$ of $\xi_k(w)$ such that $|\alpha|^2/(1-|\alpha|^2) < |\eta_0(0)| < 1$. Write $\xi_k(w) = \eta_0(w)\eta_1(w)$. Let $\theta(w) = \psi_k(w)\eta_1(w)$. Since $\psi_{k+1}(w) = \psi_k(w)\xi_k(w), \ \psi_{k+1}(w)/\eta_0(w) = \theta(w)$. Hence we have

$$\psi_{k+1}(w)H^2(w) \subset \theta(w)H^2(w) \subset \psi_k(w)H^2(w).$$

We shall show that

$$\left[\boldsymbol{V}(\boldsymbol{\theta}(w)H^2(w)) \ominus F_w \boldsymbol{V}(\boldsymbol{\theta}(w)H^2(w)) \right]_{\mathscr{M} \ominus z\mathscr{M}} \neq \boldsymbol{V}(\boldsymbol{\theta}(w)H^2(w)),$$

so we get the assertion.

We note that $\psi_n(w)/\theta(w)$ is an inner function for every $n \ge k+1$. Let

$$p_n(z) = \varphi_{k+n}(z), \quad n \ge 0$$

and

$$q_0(w) = 1$$
 and $q_n(w) = \frac{\psi_{k+n}(w)}{\theta(w)}, \quad n \ge 1.$

Write

$$\mu_n(w) = \frac{q_{n+1}(w)}{q_n(w)}.$$

Then

$$\mu_0(w) = \frac{\psi_{k+1}(w)}{\theta(w)} \quad \text{and} \quad \mu_n(w) = \frac{\psi_{k+n+1}(w)}{\psi_{k+n}(w)} = \xi_{k+n}(w), \quad n \ge 1.$$

We note that $\{p_n(z)\}_{n\geq 0}$ and $\{q_n(w)\}_{n\geq 0}$ satisfy conditions (1)–(4). Let

$$\mathscr{L} = \sum_{n=0}^{\infty} \oplus \left(p_n(z) H^2(z) \right) \otimes \left(q_n(w) \left(H^2(w) \ominus \mu_n(w) H^2(w) \right) \right).$$

Then $\mathscr L$ is an invariant subspace of H^2 and

$$\begin{aligned} \mathscr{L} \ominus z\mathscr{L} &= \sum_{n=0}^{\infty} \oplus p_n(z)q_n(w) \big(H^2(w) \ominus \mu_n(w) H^2(w) \big) \\ &= \varphi_k(z) \bigg(H^2(w) \ominus \frac{\psi_{k+1}(w)}{\theta(w)} H^2(w) \bigg) \\ &\oplus \sum_{n=1}^{\infty} \oplus \varphi_{k+n}(z) \frac{\psi_{k+n}(w)}{\theta(w)} \big(H^2(w) \ominus \xi_{k+n}(w) H^2(w) \big). \end{aligned}$$

We have

$$\theta(w)H^{2}(w) = \left(\theta(w)H^{2}(w) \ominus \psi_{k+1}(w)H^{2}(w)\right)$$
$$\oplus \sum_{n=1}^{\infty} \oplus \psi_{k+n}(w)\left(H^{2}(w) \ominus \xi_{k+n}(w)H^{2}(w)\right)$$
$$\subset E_{k} \oplus \sum_{n=k+1}^{\infty} \oplus E_{n}.$$

We have also

$$\theta(w)(\mathscr{L} \ominus z\mathscr{L}) = \varphi_k(z) \big(\theta(w) H^2(w) \ominus \psi_{k+1}(w) H^2(w) \big)$$
$$\oplus \sum_{n=1}^{\infty} \oplus \varphi_{k+n}(z) \psi_{k+n}(w) \big(H^2(w) \ominus \xi_{k+n}(w) H^2(w) \big)$$
$$= V(\theta(w) H^2(w)) \subset \mathscr{M} \ominus z\mathscr{M}.$$

Let

$$\mathscr{K} = \left(\varphi_k(z)H^2(z)\right) \otimes \left(\theta(w)H^2(w) \ominus \psi_{k+1}(w)H^2(w)\right)$$
$$\oplus \sum_{n=1}^{\infty} \oplus \left(\varphi_{k+n}(z)H^2(z)\right) \otimes \left(\psi_{k+n}(w)\left(H^2(w) \ominus \xi_{k+n}(w)H^2(w)\right)\right).$$

Then \mathscr{K} is an invariant subspace of H^2 and $\mathscr{K} \ominus z\mathscr{K} = V(\theta(w)H^2(w))$. Write $V_z = T_z|_{\mathscr{L}}, V_w = T_w|_{\mathscr{L}}, W_z = T_z|_{\mathscr{K}}$, and $W_w = T_w|_{\mathscr{K}}$. We define a unitary operator $U: \mathscr{L} \to \mathscr{K}$ by $Uf = \theta(w)f, f \in \mathscr{L}$. Then $UV_z = W_z U$ and $UV_w = W_w U$. Let G_w and H_w be the fringe operators on $\mathscr{L} \ominus z\mathscr{L}$ and $\mathscr{K} \ominus z\mathscr{K}$, respectively. Then $F_w|_{\mathscr{K} \ominus z\mathscr{K}} = H_w$, and for $f \in \mathscr{L} \ominus z\mathscr{L}$ we have

$$U^{-1}H_{w}Uf = U^{-1}P_{\mathscr{K}\ominus z\mathscr{K}}W_{w}Uf$$

= $U^{-1}(I_{\mathscr{K}} - W_{z}W_{z}^{*})UV_{w}f$
= $(I_{\mathscr{L}} - V_{z}V_{z}^{*})V_{w}f$
= $P_{\mathscr{L}\ominus z\mathscr{L}}V_{w}f$
= $G_{w}f$,

where $I_{\mathscr{K}}$ is the identity operator on \mathscr{K} . Hence $UG_w = F_wU$ on $\mathscr{L} \ominus z\mathscr{L}$. By

this fact, we have

$$\left[\boldsymbol{V}(\boldsymbol{\theta}(w)H^2(w)) \ominus F_w \boldsymbol{V}(\boldsymbol{\theta}(w)H^2(w))\right]_{\mathcal{M} \ominus z\mathcal{M}} = \boldsymbol{V}(\boldsymbol{\theta}(w)H^2(w))$$

if and only if

$$\left[(\mathscr{L} \ominus z\mathscr{L}) \ominus G_w(\mathscr{L} \ominus z\mathscr{L}) \right]_{\mathscr{L} \ominus z\mathscr{L}} = \mathscr{L} \ominus z\mathscr{L}$$

Now we work on $\mathscr{L} \ominus z\mathscr{L}$. We have

$$\frac{p_0(0)}{p_1(0)} = \frac{\varphi_k(0)}{\varphi_{k+1}(0)} = \zeta_k(0) = \alpha \quad \text{and} \quad 0 < |\alpha|^2 < \frac{1}{2},$$

and

$$q_2(w) = \frac{\psi_{k+2}(w)}{\theta(w)} = \frac{\psi_{k+1}(w)\xi_{k+1}(w)}{\theta(w)} = \eta_0(w)\xi_{k+1}(w).$$

Since $\xi_{k+1}(0) = 0$, we get $q_2(0) = 0$. We have also

$$q_1(w) = \frac{\psi_{k+1}(w)}{\theta(w)} = \eta_0(w).$$

Hence $q_1(0) = \eta_0(0)$. Moreover we have $|\alpha|^2/(1 - |\alpha|^2) < |\eta_0(0)| < 1$. Therefore by Theorem 2.9 (iii), we get

$$\left[(\mathscr{L} \ominus z\mathscr{L}) \ominus G_w (\mathscr{L} \ominus z\mathscr{L}) \right]_{\mathscr{L} \ominus z\mathscr{L}} \neq \mathscr{L} \ominus z\mathscr{L}.$$

This shows that

$$\left[\boldsymbol{V}(\boldsymbol{\theta}(w)H^2(w)) \ominus F_w \boldsymbol{V}(\boldsymbol{\theta}(w)H^2(w))\right]_{\mathcal{M} \ominus z\mathcal{M}} \neq \boldsymbol{V}(\boldsymbol{\theta}(w)H^2(w)).$$

Thus we get the assertion.

EXAMPLE 2.11. Let $\alpha = \varphi_0(0)/\varphi_1(0)$. We shall give an example of \mathscr{M} satisfying $1/2 \leq |\alpha|^2 < 1$, but the Beurling type theorem does not hold for F_w on $\mathscr{M} \ominus z\mathscr{M}$, compared with the assertion of Theorem 2.9.

Let $\psi_0(w) = 1$, $\psi_1(w)$ be a singular inner function and $\psi_n(w) = w^n \psi_1(w)$ for $n \ge 2$. Let $\varphi_0(z)$ be a singular inner function satisfying $0 < |\varphi_0(0)|^2 < 1/2$. There exists a positive number r_1 with $0 < r_1 < 1$ satisfying $1/2 < |\varphi_0(0)|^2/|\varphi_0(0)^{r_1}|^2 < 1/2$.

1 and $|\varphi_0(0)|^2 < |\varphi_0(0)^{r_1}|^2 < 1/2$. Let $\varphi_1(z) = \varphi_0(z)^{r_1}$. Then there exists a positive number r_2 with $0 < r_2 < r_1 < 1$ satisfying $0 < |\varphi_1(0)|^2/|\varphi_0(0)^{r_2}|^2 < 1/2$. Let $\varphi_2(z) = \varphi_0(z)^{r_2}$ and $\{r_n\}_{n\geq 3}$ be a sequence of positive numbers satisfying $0 < r_{n+1} < r_n < r_2 < r_1 < 1$. Then $\{\varphi_n(z)\}_{n\geq 0}$ and $\{\psi_n(z)\}_{n\geq 0}$ satisfy conditions (1)–(4). Note that $\xi_0(w) = \psi_1(w)/\psi_0(w) = \psi_1(w)$ is not a finite Blaschke product. Since

$$\xi_2(w) = \frac{\psi_3(w)}{\psi_2(w)} = \frac{w^3\psi_1(w)}{w^2\psi_1(w)} = w,$$

we have $\xi_2(0) = 0$. Also we have $0 < |\zeta_1(0)| = |\varphi_1(0)|^2 / |\varphi_2(0)|^2 < 1/2$. Therefore by Theorem 2.10, the Beurling type theorem does not hold for F_w on $\mathcal{M} \ominus z\mathcal{M}$.

Here we study the case $\psi_n(w) = w^n, n \ge 0$. We write $e_n = \varphi_n(z)w^n$ for $n \ge 0$. Then $\{e_n\}_{n\ge 0}$ is an orthonormal basis for $\mathcal{M} \ominus z\mathcal{M}$. We have

$$F_w e_n = \langle w e_n, e_{n+1} \rangle e_{n+1} = \langle \varphi_n(z), \varphi_{n+1}(z) \rangle e_{n+1} = \zeta_n(0) e_{n+1},$$

so F_w on $\mathcal{M} \ominus z\mathcal{M}$ is a unilateral weighted shift operator. The following was pointed out essentially in [9, Theorem 2.1] as an application of Theorem A.

LEMMA 2.12. Let H be a separable Hilbert space with an orthonormal basis $\{\tau_n\}_{n\geq 0}$. Let $\{c_n\}_{n\geq 0}$ be a sequence of complex numbers satisfying $\sup_n |c_n| < \infty$. Let T be a unilatral weighted shift on H defined by $T\tau_n = c_n\tau_{n+1}$ for $n \geq 0$. If $1/\sqrt{2} \leq |c_0| \leq 1$ and $1 \leq |c_n|^2 (2 - |c_{n-1}|^2)$ for every $n \geq 1$, then the Beurling type theorem holds for T.

By the above lemma, we have the following.

THEOREM 2.13. Suppose that $\psi_n(w) = w^n$ for every $n \ge 0$. If

$$|\zeta_0(0)|^2 \ge \frac{1}{2}$$
 and $|\zeta_n(0)|^2 \ge \frac{1}{2 - |\zeta_{n-1}(0)|^2}$ for every $n \ge 1$,

then the Beurling type theorem holds for the fringe operator F_w on $\mathscr{M} \ominus z\mathscr{M}$.

3. The case $M = \varphi(z)H^2 + \psi(w)H^2$.

Let $\varphi(z)$ and $\psi(w)$ be nonconstant inner functions with $\varphi(0) \neq 0$ and

$$M = \varphi(z)H^2 + \psi(w)H^2.$$

Then M coincides with \mathcal{M} associated with the sequences of inner functions

$$\varphi_0(z) = \varphi(z), \quad \varphi_n(z) = 1, \quad n \ge 1$$

and

$$\psi_0(w) = 1, \quad \psi_n(w) = w^{n-1}\psi(w), \quad n \ge 1.$$

So to study M we use the same notations as the ones in Section 2. We have $A_0 = 1, A_n = \varphi(0) = \zeta_0(0)$ for $n \ge 1, \xi_0(w) = \psi(w)$, and $\xi_n(w) = w$ for $n \ge 1$. We have also

$$E_0 = H^2(w) \ominus \psi(w) H^2(w)$$
 and $E_n = \mathbf{C} \cdot w^{n-1} \psi(w), n \ge 1.$

THEOREM 3.1. Let $\varphi(z)$ and $\psi(w)$ be nonconstant inner functions with $\varphi(0) \neq 0$ and $M = \varphi(z)H^2 + \psi(w)H^2$. Let $\alpha = \varphi(0)$ and $\beta = \psi(0)$. Then we have the following.

(i) If $1/2 \le |\alpha|^2$, then

$$\left[(M \ominus zM) \ominus F_w(M \ominus zM) \right]_{M \ominus zM} = M \ominus zM$$

(ii) If $0 < |\alpha|^2 < 1/2$ and $|\beta|/(1 + |\beta|) \le |\alpha|^2$, then

$$\left[(M \ominus zM) \ominus F_w(M \ominus zM) \right]_{M \ominus zM} = M \ominus zM.$$

(iii) If $0 < |\alpha|^2 < 1/2$ and $|\alpha|^2 < |\beta|/(1 + |\beta|)$, then

$$\left[(M \ominus zM) \ominus F_w(M \ominus zM) \right]_{M \ominus zM} \neq M \ominus zM,$$

so in this case the Beurling type theorem does not hold for F_w on $M \ominus zM$.

- (iv) If $0 < |\alpha|^2 < 1/2$ and $\psi(w)$ is not a finite Blaschke product, then the Beurling type theorem does not hold for F_w on $M \ominus zM$.
- (\mathbf{v}) If $\beta \neq 0$, then $[M \ominus (zM+wM)]_M \neq M$. Moreover if $0 < |\beta|/(1+|\beta|) \le |\alpha|^2$, then $(\mathbf{V}^*\mathbf{V})^{-1}1$ is outer.

PROOF. (i)–(iii) follow from Theorem 2.9. (iv) follows from Theorem 2.10. (v) Since $\psi_2(0) = 0$, we have

$$1 = (1 - \overline{\beta}\psi(w)) \oplus \overline{\beta}\psi(w) \in E_0 \oplus E_1.$$

Since $A_0 = 1$ and $A_1 = \alpha$, by Lemma 2.1 (iii) we have

$$(\mathbf{V}^*)^{-1} 1 = \varphi(z) \left(1 - \overline{\beta} \psi(w) \right) \oplus \frac{\overline{\beta}}{\overline{\alpha}} \psi(w)$$
$$= \left(1 - \overline{\beta} \psi(w) \right) \left(\varphi(z) + \frac{\overline{\beta}}{\overline{\alpha}} \frac{\psi(w)}{1 - \overline{\beta} \psi(w)} \right).$$

Since $\varphi(z)$ and $\psi(w)$ are nonconstant inner functions, we have

$$(-\varphi(\mathbf{D})) \cap \left(\frac{\overline{\beta}}{\overline{\alpha}} \frac{\psi(w)}{1-\overline{\beta}\psi(w)}\right)(\mathbf{D}) \neq \emptyset.$$

Hence there is $(z_1, w_1) \in \mathbf{D}^2$ such that $((\mathbf{V}^*)^{-1}1)(z_1, w_1) = 0$, so $(\mathbf{V}^*)^{-1}1$ vanishes on some complex curve C in \mathbf{D}^2 containing (z_1, w_1) . By Corollary 2.5, $M \ominus (zM + wM) = \mathbf{C} \cdot (\mathbf{V}^*)^{-1}1$. Therefore any function in $[M \ominus (zM + wM)]_M$ vanishes on C. On the other hand, the common zero set in \mathbf{D}^2 of $\varphi(z)H^2 + \psi(w)H^2$ equals to

$$\{(z,w)\in \boldsymbol{D}^2:\varphi(z)=0,\psi(w)=0\}$$

and this is a discrete set in D^2 . Therefore we get $[M \ominus (zM + wM)]_M \neq M$. We have

$$(\boldsymbol{V}^*\boldsymbol{V})^{-1}\mathbf{1} = \left(1 - \overline{\beta}\psi(w)\right) \oplus \frac{\overline{\beta}}{|\alpha|^2}\psi(w) = 1 + \frac{\overline{\beta}(1 - |\alpha|^2)}{|\alpha|^2}\psi(w).$$

Hence if $|\beta|/(1+|\beta|) \leq |\alpha|^2$, that is, $|\beta|(1-|\alpha|^2)/|\alpha|^2 \leq 1$, then $(V^*V)^{-1}1$ is outer.

COROLLARY 3.2. Let $\varphi(z)$ and $\psi(w)$ be nonconstant inner functions with $\varphi(0) \neq 0$ and $M = \varphi(z)H^2 + \psi(w)H^2$. Then $[M \ominus (zM + wM)]_M \neq M$.

PROOF. Suppose that $[M \ominus (zM + wM)]_M = M$ and $\varphi(0) \neq 0$. By Theorem 3.1 (v), we have $\psi(0) = 0$. Hence we have $M \ominus (zM + wM) = \mathbf{C} \cdot \varphi(z)$, so $[M \ominus (zM + wM)]_M = \varphi(z)H^2 \neq M$. This is a contradiction.

REMARK 3.3. Let $M = \varphi(z)H^2 + \psi(w)H^2$ for nonconstant inner functions $\varphi(z)$ and $\psi(w)$ (here we do not assume that $\varphi(0) \neq 0$). We note that $[M \ominus (zM + wM)]_M = M$ if and only if $\varphi(0) = \psi(0) = 0$. For, if either $\varphi(0) \neq 0$ or $\psi(0) \neq 0$, by Corollary 3.2 we have $[M \ominus (zM + wM)]_M \neq M$.

Suppose that $\varphi(0) = \psi(0) = 0$. Then it is easy to see that

$$M \ominus (zM + wM) = \boldsymbol{C} \cdot \varphi(z) \oplus \boldsymbol{C} \cdot \psi(w),$$

so we get $[M \ominus (zM + wM)]_M = M$ (see also [11, Theorem 2.3]).

Now we study the invariant subspace M under the assumption that

$$\psi(w) = \frac{w - \beta}{1 - \overline{\beta}w}, \quad |\beta| < 1.$$

THEOREM 3.4. Let $\varphi(z)$ be a nonconstant inner function with $\varphi(0) \neq 0$, $\psi(w) = (w - \beta)/(1 - \overline{\beta}w)$ with $|\beta| < 1$, and $M = \varphi(z)H^2 + \psi(w)H^2$. Let $\alpha = \varphi(0)$. Then the Beurling type theorem holds for F_w on $M \ominus zM$ if and only if $|\beta|/(1 + |\beta|) \leq |\alpha|^2$.

PROOF. Let L be a nonzero invariant subspace of $M \ominus zM$ for F_w . By Theorem 2.4, $L = V(\theta(w)H^2(w))$ for an inner function $\theta(w)$. Since

$$H^{2}(w) = \boldsymbol{C} \cdot rac{1}{1 - \overline{eta}w} \oplus rac{w - eta}{1 - \overline{eta}w} H^{2}(w),$$

we have

$$\theta(w)H^2(w) = \mathbf{C} \cdot \frac{\theta(w)}{1 - \overline{\beta}w} \oplus \theta(w) \frac{w - \beta}{1 - \overline{\beta}w} H^2(w).$$

Note that

$$A_0 = 1, \quad A_n = \alpha \ (n \ge 1), \quad E_0 = \mathbf{C} \cdot \frac{1}{1 - \overline{\beta}w},$$

and

$$E_n = \mathbf{C} \cdot w^{n-1} \frac{w-\beta}{1-\overline{\beta}w}, \quad n \ge 1.$$

Then

$$\boldsymbol{V}(\theta(w)H^2(w)) = \boldsymbol{C} \cdot \boldsymbol{V} \frac{\theta(w)}{1 - \overline{\beta}w} + \theta(w) \frac{w - \beta}{1 - \overline{\beta}w} H^2(w).$$

By Theorem 2.4,

644

The Beurling type theorem

$$V(\theta(w)H^2(w)) \ominus F_w V(\theta(w)H^2(w)) = C \cdot g$$

for some $g \in V(\theta(w)H^2(w))$ with $g \neq 0$. By Theorem 2.4 (vi), we may take $g = P_L(V^*)^{-1}\theta(w)$, where $L = V(\theta(w)H^2(w))$. Since

$$\begin{aligned} \theta(w) &= \left\langle \theta(w), \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w} \right\rangle \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w} \oplus \left(\theta(w) - \left\langle \theta(w), \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w} \right\rangle \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w} \right) \\ &= \theta(\beta) \frac{1-|\beta|^2}{1-\overline{\beta}w} \oplus \left(\theta(w) - \theta(\beta) \frac{1-|\beta|^2}{1-\overline{\beta}w} \right) \\ &\in E_0 \oplus \left(\sum_{n=1}^{\infty} \oplus E_n \right), \end{aligned}$$

by Lemma 2.1 (iii) we have

$$(\boldsymbol{V}^*)^{-1}\boldsymbol{\theta}(w) = \varphi(z)\boldsymbol{\theta}(\beta)\frac{1-|\beta|^2}{1-\overline{\beta}w} \oplus \frac{1}{\overline{\alpha}}\bigg(\boldsymbol{\theta}(w) - \boldsymbol{\theta}(\beta)\frac{1-|\beta|^2}{1-\overline{\beta}w}\bigg).$$

Since

$$(\boldsymbol{V}^*)^{-1}\boldsymbol{\theta}(w) \perp \boldsymbol{\theta}(w) \frac{w-\beta}{1-\overline{\beta}w} w H^2(w) = \boldsymbol{V}\bigg(\boldsymbol{\theta}(w) \frac{w-\beta}{1-\overline{\beta}w} w H^2(w)\bigg),$$

we may write g as

$$g = P_L(\mathbf{V}^*)^{-1}\theta(w) = a\mathbf{V}\frac{\theta(w)}{1-\overline{\beta}w} + b\theta(w)\frac{w-\beta}{1-\overline{\beta}w}, \quad a, b \in \mathbf{C}.$$
 (3.1)

Hence

$$g = aV \frac{\theta(w) - \theta(\beta)}{1 - \overline{\beta}w} + aV \frac{\theta(\beta)}{1 - \overline{\beta}w} + b\theta(w) \frac{w - \beta}{1 - \overline{\beta}w},$$

so that

$$g = a\alpha \frac{\theta(w) - \theta(\beta)}{1 - \overline{\beta}w} + a\theta(\beta)\varphi(z)\frac{1}{1 - \overline{\beta}w} + b\theta(w)\frac{w - \beta}{1 - \overline{\beta}w}.$$
 (3.2)

We have

$$\begin{split} w\theta(w) &= \left\langle w\theta(w), \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w} \right\rangle \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w} \\ &\oplus \left(w\theta(w) - \left\langle w\theta(w), \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w} \right\rangle \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w} \right) \\ &= \beta\theta(\beta) \frac{1-|\beta|^2}{1-\overline{\beta}w} \oplus \left(w\theta(w) - \beta\theta(\beta) \frac{1-|\beta|^2}{1-\overline{\beta}w} \right) \\ &\in E_0 \oplus \left(\sum_{n=1}^{\infty} \oplus E_n \right). \end{split}$$

Hence

$$\boldsymbol{V}(w\theta(w)) = \beta\theta(\beta)\varphi(z)\frac{1-|\beta|^2}{1-\overline{\beta}w} \oplus \alpha\bigg(w\theta(w) - \beta\theta(\beta)\frac{1-|\beta|^2}{1-\overline{\beta}w}\bigg),$$

so that

$$\boldsymbol{V}(w\theta(w)) = \alpha w\theta(w) + \frac{\beta\theta(\beta)(1-|\beta|^2)}{1-\overline{\beta}w}(\varphi(z)-\alpha).$$
(3.3)

By (3.2), we have

$$\begin{split} \langle g, \alpha w \theta(w) \rangle &= a |\alpha|^2 \left\langle \frac{\theta(w) - \theta(\beta)}{1 - \overline{\beta}w}, w \theta(w) \right\rangle + a \theta(\beta) \overline{\alpha} \left\langle \frac{\varphi(z)}{1 - \overline{\beta}w}, w \theta(w) \right\rangle \\ &+ b \overline{\alpha} \left\langle \theta(w) \frac{w - \beta}{1 - \overline{\beta}w}, w \theta(w) \right\rangle \\ &= a |\alpha|^2 (\overline{\beta} - \overline{\beta} |\theta(\beta)|^2) + a |\alpha|^2 \overline{\beta} |\theta(\beta)|^2 + b \overline{\alpha} \left\langle \frac{1 - |\beta|^2}{1 - \overline{\beta}w}, 1 \right\rangle \\ &= a |\alpha|^2 \overline{\beta} + b \overline{\alpha} (1 - |\beta|^2). \end{split}$$

and

$$\begin{split} \left\langle g, \frac{\beta\theta(\beta)(1-|\beta|^2)}{1-\overline{\beta}w}(\varphi(z)-\alpha) \right\rangle &= a\overline{\beta}|\theta(\beta)|^2(1-|\beta|^2) \left\langle \frac{\varphi(z)}{1-\overline{\beta}w}, \frac{\varphi(z)-\alpha}{1-\overline{\beta}w} \right\rangle \\ &= a\overline{\beta}|\theta(\beta)|^2(1-|\beta|^2) \frac{1-|\alpha|^2}{1-|\beta|^2} \\ &= a(1-|\alpha|^2)\overline{\beta}|\theta(\beta)|^2 \end{split}$$

Since $\langle g, V(w\theta(w)) \rangle = 0$, by (3.3) we have

$$a|\alpha|^2\overline{\beta} + b\overline{\alpha}(1-|\beta|^2) + a(1-|\alpha|^2)\overline{\beta}|\theta(\beta)|^2 = 0.$$
(3.4)

First, we study the case $\beta = 0$. Then trivially $|\beta|/(1 + |\beta|) \leq |\alpha|^2$ holds. By (3.4), we have $b\overline{\alpha} = 0$, so b = 0. Hence $g = aV\theta(w) = V(a\theta(w)), a \neq 0$. Therefore $(V^{-1}g)(w)/\theta(w)$ equals constant a and thus it is outer. Then by Theorem 2.4 (v), the Beurling type theorem holds for F_w on $M \ominus zM$.

Next, suppose that $\beta \neq 0$. By (3.4), we have

$$b\overline{\alpha}(1-|\beta|^2) + a\overline{\beta}(|\alpha|^2 + (1-|\alpha|^2)|\theta(\beta)|^2) = 0.$$

Hence

$$a = \frac{-b\overline{\alpha}(1-|\beta|^2)}{\overline{\beta}(|\alpha|^2 + (1-|\alpha|^2)|\theta(\beta)|^2)}$$

Therefore by (3.1), we have

$$g = b \bigg(\frac{-\overline{\alpha}(1-|\beta|^2)}{\overline{\beta}\big(|\alpha|^2 + (1-|\alpha|^2)|\theta(\beta)|^2\big)} V \frac{\theta(w)}{1-\overline{\beta}w} + \theta(w) \frac{w-\beta}{1-\overline{\beta}w} \bigg).$$

We may assume that b = 1. Then

$$g = \frac{-\overline{\alpha}(1-|\beta|^2)}{\overline{\beta}\big(|\alpha|^2 + (1-|\alpha|^2)|\theta(\beta)|^2\big)} V \frac{\theta(w)}{1-\overline{\beta}w} + \theta(w)\frac{w-\beta}{1-\overline{\beta}w}.$$

Hence

$$(\mathbf{V}^{-1}g)(w) = \frac{-\overline{\alpha}(1-|\beta|^2)}{\overline{\beta}(|\alpha|^2+(1-|\alpha|^2)|\theta(\beta)|^2)} \frac{\theta(w)}{1-\overline{\beta}w} + \frac{1}{\alpha}\theta(w)\frac{w-\beta}{1-\overline{\beta}w}$$
$$= \frac{\theta(w)}{\alpha(1-\overline{\beta}w)} \left(w - \left(\beta + \frac{|\alpha|^2(1-|\beta|^2)}{\overline{\beta}(|\alpha|^2+(1-|\alpha|^2)|\theta(\beta)|^2)}\right)\right)$$

Therefore $(V^{-1}g)(w)/\theta(w)$ is an outer function if and only if

$$\left|\beta + \frac{|\alpha|^2(1-|\beta|^2)}{\overline{\beta}\left(|\alpha|^2 + (1-|\alpha|^2)|\theta(\beta)|^2\right)}\right| \ge 1,$$

and this is equivalent to

$$|\beta|^2 (|\alpha|^2 + (1 - |\alpha|^2)|\theta(\beta)|^2) + |\alpha|^2 (1 - |\beta|^2) \ge |\beta| (|\alpha|^2 + (1 - |\alpha|^2)|\theta(\beta)|^2).$$

We may rewrite this inequality as

$$-|\beta|(1-|\alpha|^2)|\theta(\beta)|^2 + |\alpha|^2 \ge 0.$$

By Theorem 2.4, the Beurling type theorem holds for F_w on $M \ominus zM$ if and only if the above inequality holds for every inner function $\theta(w)$. Since $0 \le |\theta(\beta)|^2 \le 1$, the Beurling type theorem holds for F_w on $M \ominus zM$ if and only if $-|\beta|(1-|\alpha|^2)+|\alpha|^2 \ge$ 0. This is equivalent to $|\beta|/(1+|\beta|) \le |\alpha|^2$. This completes the proof. \Box

By the proof of Theorem 3.4, we have the following.

THEOREM 3.5. Let $\varphi(z)$ be a nonconstant inner function with $\varphi(0) \neq 0$, $\psi(w) = (w - \beta)/(1 - \overline{\beta}w)$ with $0 < |\beta| < 1$, and $M = \varphi(z)H^2 + \psi(w)H^2$. Let $\alpha = \varphi(0)$. Suppose that $|\alpha|^2 < |\beta|/(1 + |\beta|)$. Let $\theta(w)$ be an inner function. Then

$$\left[\boldsymbol{V}(\theta(w)H^2(w)) \ominus F_w \boldsymbol{V}(\theta(w)H^2(w))\right]_{M \ominus zM} = \boldsymbol{V}(\theta(w)H^2(w))$$

 $\label{eq:and only if } \textit{if } |\theta(\beta)|^2 \leq |\alpha|^2/|\beta|(1-|\alpha|^2).$

By Theorem 3.1,

$$\left[(M \ominus zM) \ominus F_w(M \ominus zM) \right]_{M \ominus zM} = M \ominus zM$$

if and only if either "1/2 $\leq |\alpha|^2$ " or "0 $< |\alpha|^2 < 1/2$ and $|\beta|/(1+|\beta|) \leq |\alpha|^2$ ", where $\alpha = \varphi(0)$ and $\beta = \psi(0)$. Note that $M \ominus zM = V(H^2(w))$.

Next, we shall study the case

$$\left[\boldsymbol{V}(wH^2(w)) \ominus F_w \boldsymbol{V}(wH^2(w))\right]_{M \ominus zM} = \boldsymbol{V}(wH^2(w)).$$

THEOREM 3.6. Let $\varphi(z)$ be a nonconstant inner function with $\varphi(0) \neq 0$, $\psi(w) = (w - \beta)/(1 - \overline{\beta}w)$ with $|\beta| < 1$, and $M = \varphi(z)H^2 + \psi(w)H^2$. Let $\alpha = \varphi(0)$. Then

$$\left[\boldsymbol{V}(wH^{2}(w)) \ominus F_{w} \boldsymbol{V}(wH^{2}(w)) \right]_{M \ominus zM} = \boldsymbol{V}(wH^{2}(w))$$

if and only if $|\beta|^3/(1+|\beta|^3) \leq |\alpha|^2$.

PROOF. We have

$$M \ominus zM = \boldsymbol{C} \cdot \varphi(z) \frac{\sqrt{1 - |\beta|^2}}{1 - \overline{\beta}w} + \frac{w - \beta}{1 - \overline{\beta}w} H^2(w).$$

Let

$$e_0 = \varphi(z) \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w}, \quad e_n = w^{n-1} \frac{w-\beta}{1-\overline{\beta}w} \text{ for } n \ge 1.$$

Then $\{e_n\}_{n\geq 0}$ is an orthonormal basis for $M\ominus zM$. Let

$$\widetilde{e}_0 = \frac{\sqrt{1-|\beta|^2}}{1-\overline{\beta}w}, \quad \widetilde{e}_n = w^{n-1}\frac{w-\beta}{1-\overline{\beta}w} \text{ for } n \ge 1.$$

Then we have $E_n = \mathbf{C} \cdot \tilde{e}_n$ for every $n \ge 0$. By Theorem 2.4, $\mathbf{V}(wH^2(w))$ is an invariant subspace and

$$(M \ominus zM) \ominus \mathbf{V}(wH^2(w)) = \mathbf{C} \cdot (\mathbf{V}^*)^{-1} \mathbf{1}.$$

We have

$$1 = \langle 1, \widetilde{e}_0 \rangle \widetilde{e}_0 \oplus \langle 1, \widetilde{e}_1 \rangle \widetilde{e}_1 = \sqrt{1 - |\beta|^2} \widetilde{e}_0 \oplus (-\overline{\beta} \widetilde{e}_1).$$

Note that $A_0 = 1$ and $A_n = \alpha$ for $n \ge 1$. By Lemma 2.1 (iii), we have

$$(\boldsymbol{V}^*)^{-1} = \sqrt{1 - |\beta|^2} e_0 \oplus \left(-\frac{\overline{\beta}}{\overline{\alpha}} e_1\right).$$
(3.5)

Take $g \in V(wH^2(w))$ satisfying

$$V(wH^2(w)) \ominus F_w V(wH^2(w)) = C \cdot g.$$

We have

$$F_w^*g \in (M \ominus zM) \ominus \boldsymbol{V}(wH^2(w)) = \boldsymbol{C} \cdot (\boldsymbol{V}^*)^{-1} \mathbf{1}.$$

Here we have $F_w^*g \neq 0$. For, suppose that $F_w^*g = 0$. Then

$$g \in (M \ominus zM) \ominus F_w(M \ominus zM) = \boldsymbol{V}(H^2(w)) \ominus \boldsymbol{V}(wH^2(w)),$$

so g = 0. This is a contradiction. Hence we may assume that

$$F_w^* g = (V^*)^{-1} 1. ag{3.6}$$

Then we may write

$$g = a_0 e_0 \oplus a_1 e_1 \oplus a_2 e_2.$$

Since $g \perp (V^*)^{-1}1$, by (3.5) we have

$$a_0\sqrt{1-|\beta|^2} - \frac{\beta}{\alpha}a_1 = 0.$$

We have

$$\begin{split} F_w e_0 &= \langle F_w e_0, e_0 \rangle e_0 \oplus \langle F_w e_0, e_1 \rangle e_1 \\ &= (1 - |\beta|^2) \left\langle \frac{w}{1 - \overline{\beta}w}, \frac{1}{1 - \overline{\beta}w} \right\rangle e_0 \oplus \sqrt{1 - |\beta|^2} \langle \varphi(z), 1 \rangle \left\langle \frac{w}{1 - \overline{\beta}w}, \frac{w - \beta}{1 - \overline{\beta}w} \right\rangle e_1 \\ &= \beta e_0 \oplus \alpha \sqrt{1 - |\beta|^2} e_1, \\ F_w^* e_0 &= \langle F_w^* e_0, e_0 \rangle e_0 \\ &= \langle e_0, \beta e_0 \oplus \alpha \sqrt{1 - |\beta|^2} e_1 \rangle e_0 \\ &= \overline{\beta} e_0, \end{split}$$

and

$$\begin{aligned} F_w^* e_1 &= \left\langle F_w^* e_1, e_0 \right\rangle e_0 \\ &= \left\langle e_1, \beta e_0 \oplus \alpha \sqrt{1 - |\beta|^2} e_1 \right\rangle e_0 \\ &= \overline{\alpha} \sqrt{1 - |\beta|^2} e_0. \end{aligned}$$

We have $F_w e_n = e_{n+1}$ and $F_w^* e_{n+1} = e_n$ for $n \ge 1$. Then we have

$$F_w^*g = \left(\overline{\beta}a_0 + \overline{\alpha}\sqrt{1 - |\beta|^2}a_1\right)e_0 \oplus a_2e_1.$$

By (3.5) and (3.6),

The Beurling type theorem

$$\overline{\beta}a_0 + \overline{\alpha}\sqrt{1 - |\beta|^2}a_1 = \sqrt{1 - |\beta|^2}$$
 and $a_2 = -\frac{\beta}{\overline{\alpha}}$.

Therefore

$$a_0 = \frac{\beta\sqrt{1-|\beta|^2}}{|\beta|^2 + |\alpha|^2(1-|\beta|^2)}, \quad a_1 = \frac{\alpha(1-|\beta|^2)}{|\beta|^2 + |\alpha|^2(1-|\beta|^2)}, \quad a_2 = -\frac{\overline{\beta}}{\overline{\alpha}}.$$

As a consequence, we have

$$\begin{aligned} (\mathbf{V}^{-1}g)(w) &= a_0 \widetilde{e}_0 \oplus \frac{a_1}{\alpha} \widetilde{e}_1 \oplus \frac{a_2}{\alpha} \widetilde{e}_2 \\ &= \left(\left(a_0 \sqrt{1 - |\beta|^2} - \frac{\beta}{\alpha} a_1 \right) \frac{1}{1 - \overline{\beta}w} + \frac{a_1}{\alpha} \frac{w}{1 - \overline{\beta}w} \right) \oplus \frac{a_2}{\alpha} w \frac{w - \beta}{1 - \overline{\beta}w} \\ &= \frac{a_1}{\alpha} \frac{w}{1 - \overline{\beta}w} \oplus \frac{a_2}{\alpha} w \frac{w - \beta}{1 - \overline{\beta}w} \\ &= \frac{w}{1 - \overline{\beta}w} \left(\frac{a_1}{\alpha} - \frac{a_2\beta}{\alpha} + \frac{a_2}{\alpha} w \right) \\ &= \frac{w}{1 - \overline{\beta}w} \left(\frac{1 - |\beta|^2}{|\beta|^2 + |\alpha|^2(1 - |\beta|^2)} + \frac{|\beta|^2}{|\alpha|^2} - \frac{\overline{\beta}}{|\alpha|^2} w \right). \end{aligned}$$

If $\beta = 0$, then $(V^{-1}g)(w) = w/|\alpha|^2$. By Theorem 2.4 (v), we get

$$\left[\boldsymbol{V}(wH^2(w)) \ominus F_w \boldsymbol{V}(wH^2(w))\right]_{M \ominus zM} = \boldsymbol{V}(wH^2(w)).$$

Suppose that $\beta \neq 0$, then we have

$$(\boldsymbol{V}^{-1}g)(w) = \frac{\overline{\beta}}{|\alpha|^2} \frac{w}{1 - \overline{\beta}w} \left(\frac{|\alpha|^2}{\overline{\beta}} \left(\frac{1 - |\beta|^2}{|\beta|^2 + |\alpha|^2(1 - |\beta|^2)} + \frac{|\beta|^2}{|\alpha|^2} \right) - w \right).$$

Then $(V^{-1}g)(w)/w$ is an outer function if and only if

$$\frac{|\alpha|^2}{|\beta|} \left(\frac{1-|\beta|^2}{|\beta|^2+|\alpha|^2(1-|\beta|^2)} + \frac{|\beta|^2}{|\alpha|^2} \right) \geq 1,$$

that is,

$$\frac{1-|\beta|^2}{|\beta|^2+|\alpha|^2(1-|\beta|^2)}+\frac{|\beta|^2}{|\alpha|^2}\geq \frac{|\beta|}{|\alpha|^2}.$$

Rewriting this, we have

$$|\alpha|^{2}(1-|\beta|^{2})+|\beta|^{2}(|\beta|^{2}+|\alpha|^{2}(1-|\beta|^{2})) \geq |\beta|(|\beta|^{2}+|\alpha|^{2}(1-|\beta|^{2})).$$

and this is equivalent to $|\beta|^3/(1+|\beta|^3) \le |\alpha|^2$. By Theorem 2.4 (v), we get our assertion.

Let $\varphi(z)$ be a nonconstant inner function with $\varphi(0) \neq 0$ and $M = \varphi(z)H^2 + wH^2$. Then by Theorem 3.4, the Beurling type theorem holds for F_w on $M \ominus zM$.

THEOREM 3.7. Let $\varphi(z)$ be a nonconstant inner function with $\varphi(0) \neq 0$ and $M = \varphi(z)H^2 + w^2H^2$. Let

$$\gamma_0 = \sup\{|\theta(0)|(|\theta'(0)| - |\theta(0)|) : \theta(w) \text{ is inner}\}.$$

Then $\gamma_0(1+\gamma_0) \leq |\varphi(0)|^2$ if and only if the Beurling type theorem holds for F_w on $M \ominus zM$.

PROOF. We have

$$E_0 = \boldsymbol{C} \cdot 1 \oplus \boldsymbol{C} \cdot \boldsymbol{w}$$
 and $E_n = \boldsymbol{C} \cdot \boldsymbol{w}^{n+1}$ for $n \ge 1$.

Let L be a nonzero invariant subspace of $M \ominus zM$ for F_w . By Theorem 2.4 (i), there is an inner function $\theta(w)$ such that $L = V(\theta(w)H^2(w))$. Let

$$\theta(w) = (a_0 + a_1 w) \oplus \sum_{n=2}^{\infty} a_n w^n \in \sum_{n=0}^{\infty} \oplus E_n,$$

where $a_0 = \theta(0)$ and $a_1 = \theta'(0)$. We have

$$V\theta(w) = \varphi(z)(a_0 + a_1w) \oplus \varphi(0) \sum_{n=2}^{\infty} a_n w^n,$$
$$V(w\theta(w)) = a_0\varphi(z)w \oplus \varphi(0) \sum_{n=1}^{\infty} a_n w^{n+1},$$

and

$$\boldsymbol{V}(w^k\theta(w)) = \varphi(0)\sum_{n=0}^{\infty} a_n w^{n+k}, \quad k \ge 2.$$

Since $\theta(w) \perp w^k \theta(w)$ and $w \theta(w) \perp w^k \theta(w)$ for $k \geq 2$, we have $V \theta(w) \perp V(w^k \theta(w))$ and $V(w \theta(w)) \perp V(w^k \theta(w))$ for $k \geq 2$. These lead us that there is a constant $c \in C$ satisfying

$$V\theta(w) + cV(w\theta(w)) \perp F_wL.$$

This is equivalent to $V\theta(w) + cV(w\theta(w)) \perp V(w\theta(w))$, that is,

$$\overline{a}_0 a_1 + |\varphi(0)|^2 \sum_{n=1}^{\infty} \overline{a}_n a_{n+1} + c \left(|a_0|^2 + |\varphi(0)|^2 \sum_{n=1}^{\infty} |a_n|^2 \right) = 0.$$

Since $\|\theta\|^2 = 1$, $\sum_{n=1}^{\infty} |a_n|^2 = 1 - |a_0|^2$. Since $w\theta(w) \perp \theta(w)$, we have $\sum_{n=1}^{\infty} \overline{a}_n a_{n+1} = -\overline{a}_0 a_1$. Hence

$$c = -\frac{\overline{a}_0 a_1 (1 - |\varphi(0)|^2)}{|a_0|^2 + |\varphi(0)|^2 (1 - |a_0|^2)}$$
$$= -\frac{\overline{\theta(0)}\theta'(0)(1 - |\varphi(0)|^2)}{|\theta(0)|^2 + |\varphi(0)|^2 (1 - |\theta(0)|^2)}$$

Write $g = V\theta(w) + cV(w\theta(w))$. Then $g \in L \ominus F_w L$. We have $(V^{-1}g)(w) = \theta(w)(1+cw)$. If |c| > 1, then $(V^{-1}g)(w)/\theta(w)$ is not outer, and in this case by Theorem 2.4 (v) we have $[L \ominus F_w L]_{M \ominus zM} \neq L$. If $|c| \leq 1$, then $(V^{-1}g)(w)/\theta(w)$ is outer, so $[L \ominus F_w L]_{M \ominus zM} = L$. Therefore there is an inner function $\theta(w)$ satisfying

$$1 < \frac{|\theta(0)||\theta'(0)|(1-|\varphi(0)|^2)}{|\theta(0)|^2 + |\varphi(0)|^2(1-|\theta(0)|^2)}$$
(3.7)

if and only if the Beurling type theorem does not hold for F_w on $M \ominus zM$.

We may rewrite condition (3.7) as

$$\left(|\theta(0)||\theta'(0)| + 1 - |\theta(0)|^2\right)|\varphi(0)|^2 < |\theta(0)||\theta'(0)| - |\theta(0)|^2.$$
(3.8)

We note that $0 \leq |\theta(0)| |\theta'(0)| + 1 - |\theta(0)|^2$, and $|\theta(0)| |\theta'(0)| + 1 - |\theta(0)|^2 = 0$ if and only if $|\theta(0)| = 1$. But when $|\theta(0)| = 1$, (3.8) does not hold.

So we have

$$0 < |\theta(0)| |\theta'(0)| + 1 - |\theta(0)|^2.$$

Then we may rewrite (3.8) as

$$|\varphi(0)|^{2} < \frac{|\theta(0)|(|\theta'(0)| - |\theta(0)|)}{|\theta(0)|(|\theta'(0)| - |\theta(0)|) + 1} \le \frac{\gamma_{0}}{\gamma_{0} + 1}.$$
(3.9)

If $|\varphi(0)|^2 < \gamma_0/(\gamma_0 + 1)$, then there exists an inner function $\theta(w)$ satisfying (3.9). In this case, the Beurling type theorem does not hold for F_w on $M \ominus zM$. If $|\varphi(0)|^2 \ge \gamma_0/(\gamma_0 + 1)$, then there are no inner functions $\theta(w)$ satisfying (3.9). In this case, the Beurling type theorem holds for F_w on $M \ominus zM$.

REMARK 3.8. Let $\theta(w) = (w - \delta)/(1 - \delta w)$ for $0 < \delta < 1$. Then $\theta(0) = -\delta$ and $\theta'(0) = 1 - \delta^2$. Hence

$$\gamma_0 \ge |\theta(0)|(|\theta'(0)| - |\theta(0)|) = \delta(1 - \delta - \delta^2),$$

so we have $5/27 \leq \gamma_0$.

For an inner function $\theta(w)$, $|\theta(0)|^2 + |\theta'(0)|^2 \le 1$. We have

$$\gamma_0 \le \max\left\{x(y-x): x^2 + y^2 \le 1, x \ge 0, y \ge 0\right\} = \frac{\sqrt{2}-1}{2},$$

where the maximum attains at $x = \sqrt{2 - \sqrt{2}}/2$ and $y = \sqrt{2 + \sqrt{2}}/2$. Thus we get $5/27 \le \gamma_0 \le (\sqrt{2} - 1)/2$. We note that there are no inner functions $\theta(w)$ satisfying $|\theta(0)| = \sqrt{2 - \sqrt{2}}/2$ and $|\theta'(0)| = \sqrt{2 + \sqrt{2}}/2$. But we do not know the exact value of γ_0 .

4. Remarks.

In Sections 2 and 3, we assumed that condition (4) holds, that is, $\varphi_0(0) \neq 0$. In this section, we study the case $\varphi_0(0) = 0$. Write

$$\varphi_0(z) = z^{\ell_0} p_0(z), \quad \ell_0 \ge 1, \ p_0(0) \ne 0.$$

We assume that conditions (1)-(3) hold. We use the same notations as the ones in Section 2, so

$$\mathscr{M} = \sum_{n=0}^{\infty} \oplus \left(\varphi_n(z)H^2(z)\right) \otimes \left(\psi_n(w)\left(H^2(w) \ominus \xi_n(w)H^2(w)\right)\right).$$

First, we assume that $\zeta_n(0) \neq 0$ for every $n \geq 0$. Since $\prod_{j=0}^{n-1} \zeta_j(z) = \varphi_0(z)/\varphi_n(z)$, we may write $\varphi_n(z) = z^{\ell_0}p_n(z), p_n(0) \neq 0$. We have $p_0(z) = p_n(z) \prod_{j=0}^{n-1} \zeta_j(z)$. Let

The Beurling type theorem

$$\widetilde{\mathscr{M}} = \sum_{n=0}^{\infty} \oplus \left(p_n(z) H^2(z) \right) \otimes \left(\psi_n(w) \left(H^2(w) \ominus \xi_n(w) H^2(w) \right) \right).$$

Then we have

$$z^{\ell_0}\widetilde{\mathscr{M}}=\mathscr{M} \quad ext{and} \quad z^{\ell_0}(\widetilde{\mathscr{M}}\ominus z\widetilde{\mathscr{M}})=\mathscr{M}\ominus z\mathscr{M},$$

If $p_0(z) = \lambda_0$ for $\lambda_0 \in \mathbb{C}$ with $|\lambda_0| = 1$, we have $p_n(z) = \lambda_n$ for $\lambda_n \in \mathbb{C}$ with $|\lambda_n| = 1$. In this case, we have $\widetilde{\mathscr{M}} = H^2$ and $\mathscr{M} = z^{\ell_0}H^2$. Since $\mathscr{M} \ominus z\mathscr{M} = z^{\ell_0}H^2(w)$, the Beurling type theorem holds for F_w . So, we assume that $p_0(z)$ is nonconstant. Then $\{p_n(z)\}_{n\geq 0}$ satisfies conditions (2) and (4), and the Beurling type theorem holds for F_w on $\mathscr{M} \ominus z\mathscr{M}$ if and only if the Beurling type theorem holds for F_w on $\widetilde{\mathscr{M}} \ominus z\widetilde{\mathscr{M}}$.

Next we assume that there exists a nonnegative integer n_0 such that $\zeta_{n_0}(0) = 0$ and $\zeta_n(0) \neq 0$ for every n with $0 \leq n \leq n_0-1$. Hence $A_0 = 1$, $A_n = \prod_{j=0}^{n-1} \zeta_j(0) \neq 0$ for $1 \leq n \leq n_0$, and $A_n = 0$ for $n \geq n_0 + 1$. Let

$$\mathscr{K} = \sum_{n=0}^{n_0} \oplus \varphi_n(z) \psi_n(w) \left(H^2(w) \ominus \xi_n(w) H^2(w) \right) = \sum_{n=0}^{n_0} \oplus \varphi_n(z) E_n$$

and

$$K = H^2(w) \ominus \psi_{n_0+1}(w)H^2(w) = \sum_{n=0}^{n_0} \oplus E_n.$$

Then $\mathscr{K} \subset \mathscr{M} \ominus z\mathscr{M}$.

Let $0 \le n \le n_0$ and $j \ge n_0 + 1$. Then we may write

$$\varphi_n(z) = z^{\ell_0} q_n(z), \quad q_n(0) \neq 0$$

and

$$\varphi_j(z) = z^{\ell_j} q_j(z), \quad 0 \le \ell_{j+1} \le \ell_j < \ell_0, \quad q_j(0) \ne 0.$$

Since $\varphi_n(z)/\varphi_j(z)$ is inner, $q_n(z)/q_j(z)$ is also inner and we have

$$\langle \varphi_n(z), \varphi_j(z) \rangle = \left\langle z^{\ell_0 - \ell_j} \frac{q_n(z)}{q_j(z)}, 1 \right\rangle = 0.$$

This shows that $\varphi_n(z)H^2(w) \perp \varphi_j(z)H^2(w)$. Hence

$$w\varphi_n(z)E_n \perp \sum_{j=n_0+1}^{\infty} \oplus \varphi_j(z)E_j.$$

Since $\mathscr{M} \ominus z\mathscr{M} = \sum_{n=0}^{\infty} \oplus \varphi_n(z)E_n$, we have $F_w\mathscr{K} \subset \mathscr{K}$. Let S_w be the compression operator of T_w on K, that is $S_w = P_K T_w|_K$. For a subset E of \mathscr{K} , let $[E]_{\mathscr{K}}$ be the closed linear span of $\{F_w^k E : k \ge 0\}$ in \mathscr{K} . Similarly, for $E \subset K$ let $[E]_K$ be the closed linear span of $\{S_w^k E : k \ge 0\}$ in K. We define the operator $\widetilde{V} : K \to \mathscr{K}$ by $\widetilde{V} = V|_K$. As in Section 2, we have the following assertions.

PROPOSITION 4.1.

- (i) $\widetilde{\boldsymbol{V}}S_w = F_w\widetilde{\boldsymbol{V}}$ on K.
- (ii) $F_w \mathscr{K}$ is dense in \mathscr{K} if and only if $1 \notin K$.

It is known that f(w) is a cyclic vector for S_w in K if and only if the greatest common divisor of the inner factor of f(w) and $\psi_{n_0+1}(w)$ equals to 1 (see [13, p. 82]).

PROPOSITION 4.2. Let L be a nonzero invariant subspace of \mathscr{K} for F_w . Then there is an inner function $\theta(w)$ such that $\psi_{n_0+1}(w)/\theta(w)$ is inner and

$$L = \widetilde{V}(\theta(w)H^2(w) \ominus \psi_{n_0+1}(w)H^2(w)).$$

Moreover F_wL is dense in L if and only if $(\psi_{n_0+1}/\theta)(0) \neq 0$.

Note that $\theta(w)H^2(w) \ominus \psi_{n_0+1}(w)H^2(w)$ is an invariant subspace of K for S_w . The following is the main result in this section.

THEOREM 4.3. The Beurling type theorem holds for F_w on \mathscr{K} if and only if $\psi_{n_0+1}(w) = cw^k$ for some $k \ge n_0 + 1$ and $c \in \mathbb{C}$ with |c| = 1.

PROOF. Suppose that $\psi_{n_0+1}(w) \neq cw^{\ell}$ for every $\ell \geq 1$ and $c \in C$ with |c| = 1. Write $\psi_{n_0+1}(w) = w^k \theta(w)$, where $k \geq 0$ and $\theta(w)$ is a nonconstant inner function with $\theta(0) \neq 0$. Let

$$L = \widetilde{\boldsymbol{V}} \big(w^k H^2(w) \ominus \psi_{n_0+1}(w) H^2(w) \big).$$

By Proposition 4.2, L is an invariant subspace of \mathscr{K} for F_w and F_wL is dense in L. Hence $[L \ominus F_wL]_{\mathscr{K}} = \{0\} \neq L$. Thus the Beurling type theorem does not hold

for F_w on \mathscr{K} . Note that if $\psi_{n_0+1}(w) = cw^k$, by condition (2) we have $k \ge n_0 + 1$.

Suppose that $\psi_{n_0+1}(w) = cw^k$ for some $k \ge n_0 + 1$ and $c \in C$ with |c| = 1. Then $\psi_j(w) = c_j w^{k_j}$ for some k_j and $c_j \in C$ with $|c_j| = 1, 0 \le j \le n_0 + 1$, satisfying

$$k_0 = 0 < k_1 < k_2 < \dots < k_{n_0+1} = k.$$

Let L be a nonzero invariant subspace of \mathscr{K} for F_w . By Proposition 4.2, there is an invariant subspace L_1 of K for S_w satisfying $L = \tilde{V}L_1$. Since $K = H^2(w) \oplus w^k H^2(w)$, we have

$$L_1 = \boldsymbol{C} \cdot \boldsymbol{w}^m \oplus \boldsymbol{C} \cdot \boldsymbol{w}^{m+1} \oplus \dots \oplus \boldsymbol{C} \cdot \boldsymbol{w}^{k-1}, \quad 0 < m < k-1.$$

Since $L_1 \ominus S_w L_1 = \mathbf{C} \cdot w^m$, we have $\widetilde{\mathbf{V}} L_1 \ominus F_w \widetilde{\mathbf{V}} L_1 = \mathbf{C} \cdot \widetilde{\mathbf{V}} w^m$. Since $[L_1 \ominus S_w L_1]_K = L_1$, we have $[\widetilde{\mathbf{V}} L_1 \ominus F_w \widetilde{\mathbf{V}} L_1]_{\mathscr{H}} = \widetilde{\mathbf{V}} L_1$. Thus the Beurling theorem holds.

REMARK 4.4. Let q(w) be a nonconstant inner function and $K = H^2(w) \oplus q(w)H^2(w)$. Let S_w be the compression operator on K. By the proof of Theorem 4.3, we see that the Beurling type theorem holds for S_w on K if and only if $q(w) = cw^k$ for some $k \ge 1$ and $c \in \mathbb{C}$ with |c| = 1.

References

- A. Aleman, S. Richter and C. Sundberg, Beurling's theorem for the Bergman space, Acta Math., 177 (1996), 275–310.
- [2] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239–255.
- [3] X. Chen and K. Guo, Analytic Hilbert Modules, Chapman Hall/CRC Res. Notes Math., 433, Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [4] R. G. Douglas and R. Yang, Operator theory in the Hardy space over the bidisk I, Integral Equations Operator Theory, 38 (2000), 207–221.
- [5] J. B. Garnett, Bounded Analytic Functions, Pure Appl. Math., 96, Academic Press, New York, 1981.
- [6] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Math., 199, Springer-Verlag, New York, 2000.
- [7] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, NJ, 1962.
- [8] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, Wandering subspaces and the Beurling type theorem I, Arch. Math. (Basel), 95 (2010), 439–446.
- [9] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, Wandering subspaces and the Beurling type theorem II, New York J. Math., 16 (2010), 489–505.
- [10] K. J. Izuchi, T. Nakazi and M. Seto, Backward shift invariant subspaces in the bidisc II, J. Operator Theory, 51 (2004), 361–376.

- [11] K. H. Izuchi, Rank-one commutators on invariant subspaces of the Hardy space on the bidisk III, Hokkaido Math. J., 38 (2009), 663–681.
- [12] S. McCullough and S. Richter, Bergman-type reproducing kernels, contractive divisors, and dilations, J. Funct. Anal., 190 (2002), 447–480.
- [13] N. K. Nikol'skii, Treatise on the Shift Operator, Grundlehren Math. Wiss, 273, Springer-Verlag, Berlin, 1986.
- [14] A. Olofsson, Wandering subspace theorems, Integral Equations Operator Theory, 51 (2005), 395–409.
- [15] S. Richter, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math., 386 (1988), 205–220.
- [16] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
- [17] M. Seto, Infinite sequences of inner functions and submodules in H²(D²), J. Operator Theory, 61 (2009), 75–86.
- [18] M. Seto and R. Yang, Inner sequence based invariant subspaces in H²(D²), Proc. Amer. Math. Soc., 135 (2007), 2519–2526.
- [19] S. Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries, J. Reine Angew. Math., 531 (2001), 147–189.
- [20] S. Sun and D. Zheng, Beurling type theorem on the Bergman space via the Hardy space of the bidisk, Sci. China Ser. A, 52 (2009), 2517–2529.
- [21] R. Yang, Operator theory in the Hardy space over the bidisk III, J. Funct. Anal., 186 (2001), 521–545.
- [22] R. Yang, The core operator and congruent submodules, J. Funct. Anal., 228 (2005), 459–489.
- [23] R. Yang, Hilbert-Schmidt submodules and issues of unitary equivalence, J. Operator Theory, 53 (2005), 169–184.

Kei-Ji Izuchi

Department of Mathematics Niigata University Niigata 950-2181, Japan E-mail: izuchi@m.sc.niigata-u.ac.jp Kou-Hei IZUCHI

Department of Mathematics Korea University Seoul 136-701, Korea E-mail: kh.izuchi@gmail.com

Yuko Izuchi

Aoyama-shinmachi 18-6-301 Niigata 950-2006, Japan E-mail: yfd10198@nifty.com