Open Access
April, 2012 Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations
Vladimir GEORGIEV, Masahito OHTA
J. Math. Soc. Japan 64(2): 533-548 (April, 2012). DOI: 10.2969/jmsj/06420533

Abstract

We study the instability of standing waves for nonlinear Schrödinger equations. Under a general assumption on nonlinearity, we prove that linear instability implies orbital instability in any dimension. For that purpose, we establish a Strichartz type estimate for the propagator generated by the linearized operator around standing wave.

Citation

Download Citation

Vladimir GEORGIEV. Masahito OHTA. "Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations." J. Math. Soc. Japan 64 (2) 533 - 548, April, 2012. https://doi.org/10.2969/jmsj/06420533

Information

Published: April, 2012
First available in Project Euclid: 26 April 2012

zbMATH: 1253.35158
MathSciNet: MR2916078
Digital Object Identifier: 10.2969/jmsj/06420533

Subjects:
Primary: 35Q55
Secondary: 35B35 , 35B45

Keywords: instability , nonlinear Schrodinger equation , standing wave , Strichartz estimate

Rights: Copyright © 2012 Mathematical Society of Japan

Vol.64 • No. 2 • April, 2012
Back to Top