Open Access
April, 2012 Chow rings of nonabelian p-groups of order p3
Nobuaki YAGITA
J. Math. Soc. Japan 64(2): 507-531 (April, 2012). DOI: 10.2969/jmsj/06420507

Abstract

$\def\mathbi#1{\textbf{\em#1}}$ Let $G$ be a nonabelian $p$ group of order $p^3$ (i.e., extraspecial $p$-group), and $BG$ its classifying space. Then $CH^{*}(BG) \cong H^{2*}(BG)$ where $CH^{*}(-)$ is the Chow ring over the field $k = \textbf{C}$. We also compute mod(2) motivic cohomology and motivic cobordism of $BQ_{8}$ and $BD_{8}$.

Citation

Download Citation

Nobuaki YAGITA. "Chow rings of nonabelian p-groups of order p3." J. Math. Soc. Japan 64 (2) 507 - 531, April, 2012. https://doi.org/10.2969/jmsj/06420507

Information

Published: April, 2012
First available in Project Euclid: 26 April 2012

zbMATH: 1251.14003
MathSciNet: MR2916077
Digital Object Identifier: 10.2969/jmsj/06420507

Subjects:
Primary: 14C15 , 14F42
Secondary: 20J06 , 57R77

Keywords: Chow ring , extraspecial p-groups , motivic cohomology

Rights: Copyright © 2012 Mathematical Society of Japan

Vol.64 • No. 2 • April, 2012
Back to Top