Open Access
Translator Disclaimer
April, 2011 Higher homotopy commutativity and the resultohedra
Yutaka HEMMI, Yusuke KAWAMOTO
J. Math. Soc. Japan 63(2): 443-471 (April, 2011). DOI: 10.2969/jmsj/06320443

Abstract

We define a higher homotopy commutativity for the multiplication of a topological monoid. To give the definition, we use the resultohedra constructed by Gelfand, Kapranov and Zelevinsky. Using the higher homotopy commutativity, we have necessary and sufficient conditions for the classifying space of a topological monoid to have a special structure considered by Félix, Tanré and Aguadé. It is also shown that our higher homotopy commutativity is rationally equivalent to the one of Williams.

Citation

Download Citation

Yutaka HEMMI. Yusuke KAWAMOTO. "Higher homotopy commutativity and the resultohedra." J. Math. Soc. Japan 63 (2) 443 - 471, April, 2011. https://doi.org/10.2969/jmsj/06320443

Information

Published: April, 2011
First available in Project Euclid: 25 April 2011

zbMATH: 1222.55009
MathSciNet: MR2793107
Digital Object Identifier: 10.2969/jmsj/06320443

Subjects:
Primary: 52B11, 55P48
Secondary: 55P35, 55R35

Rights: Copyright © 2011 Mathematical Society of Japan

JOURNAL ARTICLE
29 PAGES


SHARE
Vol.63 • No. 2 • April, 2011
Back to Top