Higher homotopy commutativity and the resultohedra

Dedicated to Professor James P. Lin on his sixtieth birthday

By Yutaka Hemmi and Yusuke Kawamoto

(Received Nov. 2, 2009)
(Revised Jan. 19, 2010)

Abstract

We define a higher homotopy commutativity for the multiplication of a topological monoid. To give the definition, we use the resultohedra constructed by Gelfand, Kapranov and Zelevinsky. Using the higher homotopy commutativity, we have necessary and sufficient conditions for the classifying space of a topological monoid to have a special structure considered by Félix, Tanré and Aguadé. It is also shown that our higher homotopy commutativity is rationally equivalent to the one of Williams.

1. Introduction.

Félix-Tanré [7] studied a condition for a pointed mapping space to be an H-space. To give the condition, they introduced the concept of $H(n)$-space for $n \geq 1$. Then by their result [$\mathbf{7}$, Proposition 1], if Y is a space with $\operatorname{cat}(Y) \leq n$ and Z is an $H(n)$-space, then $\operatorname{Map}_{*}(Y, Z)$ is an H-space, where cat (Y) denotes the Lusternik-Schnirelmann category of Y. From the definition, any space is an $H(1)$-space, and a space Z is an $H(\infty)$-space if and only if Z is an H-space.

Aguadé [1] also considered another criterion for a space to be an H-space. He first defined a T-space as a space Z such that the fibration

$$
\Omega Z \longrightarrow \operatorname{Map}\left(S^{1}, Z\right) \xrightarrow{e} Z
$$

is fiber homotopy equivalent to the trivial fibration, where ΩZ is the based loop space of Z and $e: \operatorname{Map}\left(S^{1}, Z\right) \rightarrow Z$ denotes the evaluation map at the base point. While an H-space is always a T-space, the converse is not true. To study when a T-space is an H-space, he also introduced the concept of T_{k}-space for $k \geq 1$. Then his result [1, Proposition 4.1] implies that a T_{1}-space and a T_{∞}-space are the same as a T-space and an H-space, respectively.

[^0]Generalizing both of the definitions by Félix-Tanré and Aguadé, we introduce the concept of $H_{k}(n)$-space for $n \geq 1$ and $1 \leq k \leq n$ (see Definition 5.1). Then it is easy to see that an $H_{n}(n)$-space is just an $H(n)$-space, and an $H_{k}(\infty)$-space is the same as a T_{k}-space. In particular, a space Z is an $H_{\infty}(\infty)$-space if and only if Z is an H-space.

Sugawara [19] gave a criterion for the classifying space of a topological monoid to be an H-space. His criterion is a higher homotopy commutativity for the multiplication (see Theorem 4.1). In this paper, we define a higher homotopy commutativity of a topological monoid, and generalize the result by Sugawara to the case of $H_{k}(n)$-spaces. The polytopes used in the definition are called the resultohedra, which are constructed by Gelfand-Kapranov-Zelevinsky [8].

A topological monoid with a multiplication admitting our higher homotopy commutativity is called a $C_{k}(n)$-space for $n \geq 1$ and $1 \leq k \leq n$ (see Definition 4.3). From the definition, any topological monoid is a $C_{1}(1)$-space, and a topological monoid X is a $C_{k}(2)$-space if and only if the multiplication of X is homotopy commutative for $k=1,2$. Moreover, any abelian topological monoid is a $C_{\infty}(\infty)$ space.

Our main result is stated as follows:
Theorem A. Let $n \geq 1$ and $1 \leq k \leq n$. Assume that X is a connected topological monoid. Then X is a $C_{k}(n)$-space if and only if the classifying space $B X$ is an $H_{k}(n)$-space.

From Theorem A, we have the following corollary:

Corollary 1.1. Let X be a connected topological monoid.

(1) X is a $C_{k}(\infty)$-space if and only if $B X$ is a T_{k}-space for $k \geq 1$. In particular, X is a $C_{1}(\infty)$-space if and only if $B X$ is a T-space.
(2) X is a $C_{n}(n)$-space if and only if $B X$ is an $H(n)$-space for $n \geq 1$.

Stasheff [17] expanded the theory of Sugawara into the concept of A_{n}-map for $n \geq 1$ (see Section 4). Then by Corollary 1.1(2) and Proposition 4.2, we see that a topological monoid X is a $C_{n}(n)$-space if and only if the multiplication of X is an A_{n}-map for $n \geq 1$.

Williams [22] also considered another type of higher homotopy commutativity of a topological monoid. The polytopes used in his definition are called the permutohedra, which are introduced by Milgram [16] to construct approximations to iterated loop spaces. A topological monoid with a multiplication of this sort is called a C_{n}-space for $n \geq 1$. While a $C_{k}(n)$-space is always a C_{n}-space by Proposition 4.5, the converse is not true (see Propositions 5.3 and 5.5). However, when the spaces are assumed to be rationalized, we have the following result:

Theorem B. Let $n \geq 1$ and $1 \leq k \leq n$. Assume that X is a connected topological monoid. Then $X_{(0)}$ is a $C_{k}(n)$-space if and only if $X_{(0)}$ is a C_{n}-space, where $X_{(0)}$ denotes the rationalization of X.

Throughout the paper, all spaces are assumed to be pointed, connected and of the homotopy type of $C W$-complexes.

This paper is organized as follows: In Section 2, we recall the definition and properties of the resultohedra which are used in the latter sections. In Section 3, we regard the resultohedron as a subspace of the permutohedron (see Proposition 3.1). From this interpretation, the permutohedron is decomposed by the resultohedra combinatorially (see Proposition 3.3). In Section 4, we define a $C_{k}(n)$-space using the resultohedra, and show that a $C_{k}(n)$-space is always a C_{n}-space by Proposition 3.3 (see Proposition 4.5). Section 5 is devoted to the proofs of Theorems A and B. We recall the projective spaces of a topological monoid, and define an $H_{k}(n)-$ space. To prove Theorem A, we generalize the definition of the projective space to be compatible with a $C_{k}(n)$-structure. Using Theorem A, Proposition 4.5 and the result by Félix-Tanré $[\mathbf{7}]$, we prove Theorem B. In Section 6, we show that a $C_{k}(n)$ structure is preserved by the homotopy localizations introduced by Bousfield [2] and Dror Farjoun [$\mathbf{6}$] (see Theorem 6.2). Then we have that a $C_{k}(n)$-structure is compatible with the Postnikov systems and the higher connected coverings (see Corollary 6.5).

2. Resultohedra.

Let $\mu_{n}: X^{n} \rightarrow X$ be the n-fold multiplication of a topological monoid X given by $\mu_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n}$. Then Williams [22] considered a higher homotopy between the maps $\left\{\mu_{n} \sigma \mid \sigma \in \Sigma_{n}\right\}$, where Σ_{n} denotes the n-th symmetric group which acts on X^{n} by the permutation of the factors. The polytopes to describe this higher homotopy are called the permutohedra, which are introduced by Milgram [16]. The n-th permutohedron P_{n} has vertices corresponding to Σ_{n}.

Now, if $B X$ is an H-space, then the multiplication of X satisfies the higher homotopy commutativity of Williams in the infinite level. Unfortunately, the converse is not true. To make $B X$ an H-space, we need to consider higher homotopy commutativity given by shuffles, where $\sigma \in \Sigma_{m+n}$ is called an (m, n)-shuffle if

$$
\sigma(1)<\cdots<\sigma(m) \text { and } \sigma(m+1)<\cdots<\sigma(m+n) \quad \text { for } m, n \geq 1 .
$$

For example, for the second level, we consider higher homotopy commutativity corresponding to the $(1,2)$ and $(2,1)$ shuffles. For these cases, the polytopes representing the higher homotopy are the 2 -simplex Δ^{2}. For the third level, we consider three types corresponding to the $(1,3),(2,2)$ and $(3,1)$ shuffles. The
polytopes for the higher homotopy commutativity corresponding to the $(1,3)$ and $(3,1)$ shuffles are the 3 -simplex Δ^{3}, while for the $(2,2)$ shuffle, we need to consider a more complicated polytope illustrated in [8, p. 240, Figure 1] (see also [9, p.414, Figure 61]).

In this section, we introduce the polytopes to describe our higher homotopy commutativity. The polytopes are called the resultohedra, which are constructed by Gelfand-Kapranov-Zelevinsky [8]. Since these polytopes are very complicated, we first describe the vertices of them by lattice paths. Our description is an analogy of the one of the vertices of the permutohedron P_{n} by the lattice paths in I^{n} described by Milgram.

Let $m, n \geq 1$. A lattice path in the rectangle $[0, m] \times[0, n]$ is a map $\ell:[0$, $m+n] \rightarrow[0, m] \times[0, n]$ such that $\ell(0)=(0,0), \ell(m+n)=(m, n)$ and if we write $\ell(s)=\left(\ell_{1}(s), \ell_{2}(s)\right)$ for $s \in[0, m+n]$, then $\ell(i+t)$ is either $\left(\ell_{1}(i)+t, \ell_{2}(i)\right)$ or $\left(\ell_{1}(i), \ell_{2}(i)+t\right)$ for $0 \leq i<m+n$ and $t \in I$. We denote the set of all lattice paths in $[0, m] \times[0, n]$ by $\mathscr{L}_{m, n}$.

For any two words $x_{1} \cdots x_{m}$ and $y_{1} \cdots y_{n}$, we have a new word w of length $m+n$ containing $x_{1} \cdots x_{m}$ and $y_{1} \cdots y_{n}$ as subsequences. In other words, if we put $z_{i}=x_{i}$ for $1 \leq i \leq m$ and $z_{m+j}=y_{j}$ for $1 \leq j \leq n$, then w is given by

$$
w=z_{\sigma^{-1}(1)} \cdots z_{\sigma^{-1}(m+n)} \quad \text { for some }(m, n) \text {-shuffle } \sigma .
$$

We call such a word w a shuffle of $x_{1} \cdots x_{m}$ and $y_{1} \cdots y_{n}$. In $[0, m] \times[0, n]$, we label the interval $[i-1, i] \times\{j\}$ by x_{i} for $1 \leq i \leq m, 0 \leq j \leq n$ and the interval $\{i\} \times[j-1, j]$ by y_{j} for $0 \leq i \leq m, 1 \leq j \leq n$ as in Figure 1. Then each lattice path $\ell \in \mathscr{L}_{m, n}$ is labeled by a shuffle of $x_{1} \cdots x_{m}$ and $y_{1} \cdots y_{n}$. In this label of ℓ, the symbol x_{i} means the horizontal unit move from the line $x=i-1$ to the line $x=i$ for $1 \leq i \leq m$, and y_{j} is the vertical move between two lines $y=j-1$ and $y=j$ for $1 \leq j \leq n$. For example, the lattice path $\ell \in \mathscr{L}_{4,3}$ in Figure 1 is labeled by $x_{1} y_{1} x_{2} x_{3} y_{2} x_{4} y_{3}$.

Figure 1. The lattice path $\ell=x_{1} y_{1} x_{2} x_{3} y_{2} x_{4} y_{3}$.

Given a lattice path $\ell \in \mathscr{L}_{m, n}$, let p_{i}^{ℓ} and q_{j}^{ℓ} be the lengths of the intersections of ℓ with the lines $x=i$ for $0 \leq i \leq m$ and $y=j$ for $0 \leq j \leq n$, respectively. Then in the corresponding shuffle of $x_{1} \cdots x_{m}$ and $y_{1} \cdots y_{n}, p_{i}^{\ell}$ is the number of y_{j} s between x_{i} and x_{i+1} for $0 \leq i \leq m$, and q_{j}^{ℓ} is the number of x_{i} s between y_{j} and y_{j+1} for $0 \leq j \leq n$. For example, $\left(p_{0}^{\ell}, \ldots, p_{4}^{\ell}, q_{0}^{\ell}, \ldots, q_{3}^{\ell}\right)=(0,1,0,1,1,1,2,1,0)$ for $\ell=x_{1} y_{1} x_{2} x_{3} y_{2} x_{4} y_{3}$ in Figure 1.

For $m, n \geq 1$, Gelfand-Kapranov-Zelevinsky [8, Theorem 4] defined $N_{m, n}$ as the subspace of \boldsymbol{R}^{m+n+2} consisting of all points $\left(p_{0}, \ldots, p_{m}, q_{0}, \ldots, q_{n}\right) \in$ $\left(\boldsymbol{R}^{+}\right)^{m+n+2}$ with the relations:

$$
\begin{equation*}
\sum_{0 \leq i \leq m} p_{i}=n, \quad \sum_{0 \leq j \leq n} q_{j}=m, \quad h_{i, j} \geq 0 \quad \text { and } \quad h_{m, n}=0, \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{R}^{+}=\{t \in \boldsymbol{R} \mid t \geq 0\}$ and

$$
h_{i, j}=\sum_{0 \leq k \leq i}(i-k) p_{k}+\sum_{0 \leq l \leq j}(j-l) q_{l}-i j \quad \text { for } 0 \leq i \leq m \text { and } 0 \leq j \leq n .
$$

Then by their result [$\mathbf{8}$, Theorems 2^{\prime} and 6], $N_{m, n}$ is an $(m+n-1)$-dimensional polytope such that the set of all vertices is given by

$$
v\left(N_{m, n}\right)=\left\{\left(p_{0}^{\ell}, \ldots, p_{m}^{\ell}, q_{0}^{\ell}, \ldots, q_{n}^{\ell}\right) \in \boldsymbol{R}^{m+n+2} \mid \ell \in \mathscr{L}_{m, n}\right\} .
$$

According to Kapranov-Voevodsky [14, p. 242, 6.2], the polytope $N_{m, n}$ is called the resultohedron. By [8, Proposition 13], $N_{m, 1}$ and $N_{1, n}$ are the simplices Δ^{m} and Δ^{n}, respectively (see (2.4)). For convenience, we put $N_{m, 0}=N_{0, n}=\{*\}$ for $m, n \geq 1$.

Consider the subspaces $N\left(p_{i}\right), N\left(q_{j}\right)$ and $N\left(h_{i, j}\right)$ of $N_{m, n}$ defined by

$$
\begin{array}{ll}
N\left(p_{i}\right)=\left\{\left(p_{0}, \ldots, p_{m}, q_{0}, \ldots, q_{n}\right) \in N_{m, n} \mid p_{i}=0\right\} & \text { for } 0 \leq i \leq m \\
N\left(q_{j}\right)=\left\{\left(p_{0}, \ldots, p_{m}, q_{0}, \ldots, q_{n}\right) \in N_{m, n} \mid q_{j}=0\right\} & \text { for } 0 \leq j \leq n
\end{array}
$$

and

$$
N\left(h_{i, j}\right)=\left\{\left(p_{0}, \ldots, p_{m}, q_{0}, \ldots, q_{n}\right) \in N_{m, n} \mid h_{i, j}=0\right\}
$$

for $0<i<m$ and $0<j<n$.
Proposition 2.1 ([9, Chapter 12, Corollary 2.17, Theorem 2.18]).
(1) The boundary of $N_{m, n}$ is given by

$$
\partial N_{m, 1}=\bigcup_{0 \leq i \leq m} N\left(p_{i}\right), \quad \partial N_{1, n}=\bigcup_{0 \leq j \leq n} N\left(q_{j}\right)
$$

and

$$
\partial N_{m, n}=\bigcup_{0 \leq i \leq m} N\left(p_{i}\right) \cup \bigcup_{0 \leq j \leq n} N\left(q_{j}\right) \cup \bigcup_{0<i<m, 0<j<n} N\left(h_{i, j}\right) \quad \text { for } m, n>1 \text {. }
$$

(2) The facets $N\left(p_{i}\right), N\left(q_{j}\right)$ and $N\left(h_{i, j}\right)$ are affinely homeomorphic to $N_{m-1, n}$, $N_{m, n-1}$ and $N_{i, j} \times N_{m-i, n-j}$ by the face operators

$$
\begin{array}{ll}
\varepsilon^{\left(p_{i}\right)}: N_{m-1, n} \rightarrow N_{m, n} & \text { for } 0 \leq i \leq m, \\
\varepsilon^{\left(q_{j}\right)}: N_{m, n-1} \rightarrow N_{m, n} & \text { for } 0 \leq j \leq n
\end{array}
$$

and

$$
\varepsilon^{\left(h_{i, j}\right)}: N_{i, j} \times N_{m-i, n-j} \rightarrow N_{m, n} \quad \text { for } 0<i<m \text { and } 0<j<n,
$$

respectively.
Using the same way as the proof of [16, Lemma 4.5], we have the following lemma:

LEmma 2.2. There are degeneracy operators $\left\{\delta_{k}: N_{m, n} \rightarrow N_{m-1, n}\right\}_{1 \leq k \leq m}$ and $\left\{\delta_{l}^{\prime}: N_{m, n} \rightarrow N_{m, n-1}\right\}_{1 \leq l \leq n}$ with the following relations:

$$
\left.\begin{array}{rl}
\delta_{k} \varepsilon^{\left(p_{i}\right)}(a) & = \begin{cases}\varepsilon^{\left(p_{i}\right)} \delta_{k-1}(a) & \text { if } 0 \leq i<k-1 \\
a & \text { if } i=k-1, k \\
\varepsilon^{\left(p_{i-1}\right)} \delta_{k}(a) & \text { if } k<i \leq m,\end{cases} \\
\delta_{k} \varepsilon^{\left(q_{j}\right)}(a) & =\varepsilon^{\left(q_{j}\right)} \delta_{k}(a) \tag{2.2}\\
\text { for } 0 \leq j \leq n,
\end{array}\right\} \begin{array}{ll}
\delta_{k} \varepsilon^{\left(h_{i, j}\right)}(a, b) & = \begin{cases}\left(h_{i, j}\right)\left(a, \delta_{k-i}(b)\right) & \text { if } 0<i<k \\
\varepsilon^{\left(h_{i-1, j}\right)}\left(\delta_{k}(a), b\right) & \text { if } k \leq i<m .\end{cases}
\end{array}
$$

$$
\begin{align*}
\delta_{l}^{\prime} \varepsilon^{\left(p_{i}\right)}(a) & =\varepsilon^{\left(p_{i}\right)} \delta_{l}^{\prime}(a) \quad \text { for } 0 \leq i \leq m, \\
\delta_{l}^{\prime} \varepsilon^{\left(q_{j}\right)}(a) & = \begin{cases}\varepsilon^{\left(q_{j}\right)} \delta_{l-1}^{\prime}(a) & \text { if } 0 \leq j<l-1 \\
a & \text { if } j=l-1, l \\
\varepsilon^{\left(q_{j-1}\right)} \delta_{l}^{\prime}(a) & \text { if } l<j \leq n,\end{cases} \tag{2.3}\\
\delta_{l}^{\prime} \varepsilon^{\left(h_{i, j}\right)}(a, b) & = \begin{cases}\varepsilon^{\left(h_{i, j}\right)}\left(a, \delta_{l-j}^{\prime}(b)\right) & \text { if } 0<j<l \\
\varepsilon^{\left(h_{i, j-1}\right)}\left(\delta_{l}^{\prime}(a), b\right) & \text { if } l \leq j<n .\end{cases}
\end{align*}
$$

Proof. We prove the case of $\left\{\delta_{k}\right\}_{1 \leq k \leq m}$ by induction on m and n. When $m=1$ or $n=0$, we put $\delta_{k}(a)=*$ for $1 \leq k \leq m$. Let $m>1$ and $n>0$. Assume inductively that $\left\{\delta_{k}: N_{m^{\prime}, n^{\prime}} \rightarrow N_{m^{\prime}-1, n^{\prime}}\right\}_{1 \leq k \leq m^{\prime}}$ are constructed for $m^{\prime} \leq m$ and $n^{\prime} \leq n$ with $\left(m^{\prime}, n^{\prime}\right) \neq(m, n)$.

Now we define $\widetilde{\delta}_{k}: \partial N_{m, n} \rightarrow N_{m-1, n}$ by (2.2) for $1 \leq k \leq m$. Since $N_{m, n}$ is the reduced cone of $\partial N_{m, n}$, if $a \in N_{m, n}$, then we can write $a=(b, t)$ with $b \in \partial N_{m, n}$ and $t \in I$. Set $\widetilde{\delta}_{k}(b)=(c, u)$ with $c \in \partial N_{m-1, n}$ and $u \in I$. Then we can define $\delta_{k}: N_{m, n} \rightarrow N_{m-1, n}$ by $\delta_{k}(a)=(c, t u)$, and $\left\{\delta_{k}\right\}_{1 \leq k \leq m}$ satisfies the required conditions. In the case of $\left\{\delta_{l}^{\prime}\right\}_{1 \leq l \leq n}$, the proof is similar. This completes the proof.

Let Δ^{m} denote the m-simplex:

$$
\begin{equation*}
\Delta^{m}=\left\{\left(t_{0}, \ldots, t_{m}\right) \in\left(\boldsymbol{R}^{+}\right)^{m+1} \mid \sum_{0 \leq i \leq m} t_{i}=1\right\} \quad \text { for } m \geq 0 \tag{2.4}
\end{equation*}
$$

with the vertices $v_{i}=(\overbrace{0, \ldots, 0}^{i}, 1, \overbrace{0, \ldots, 0}^{m-i})$ for $0 \leq i \leq m$. Then we have the face operators $\left\{\partial_{i}: \Delta^{m-1} \rightarrow \Delta^{m}\right\}_{0 \leq i \leq m}$ and the degeneracy operators $\left\{s_{k}: \Delta^{m} \rightarrow\right.$ $\left.\Delta^{m-1}\right\}_{1 \leq k \leq m}\left(\right.$ cf. [11, p. 109]). We define $\rho_{m}: \Delta^{m} \rightarrow[0, m]$ by

$$
\rho_{m}\left(t_{0}, \ldots, t_{m}\right)=\sum_{0 \leq i \leq m} i t_{i},
$$

and identify the image $\rho_{m}\left(\Delta^{m}\right)=[0, m]$ with the edge $v_{0} v_{m} \subset \Delta^{m}$ (see Figure 2).
Consider the quotient space

$$
\Delta^{m, n}=\Delta^{m} \times \Delta^{n} / \sim \text { for } m, n \geq 0 \text { with } m+n \geq 1
$$

and the projection $\pi_{m, n}: \Delta^{m} \times \Delta^{n} \rightarrow \Delta^{m, n}$, where the relation " \sim " is given by $\left(a_{1}, v_{j}\right) \sim\left(a_{2}, v_{j}\right)$ if $\rho_{m}\left(a_{1}\right)=\rho_{m}\left(a_{2}\right)$ for $a_{1}, a_{2} \in \Delta^{m}$ and $0 \leq j \leq n$, and

Figure 2. The projection ρ_{2}.
$\left(v_{i}, b_{1}\right) \sim\left(v_{i}, b_{2}\right)$ if $\rho_{n}\left(b_{1}\right)=\rho_{n}\left(b_{2}\right)$ for $b_{1}, b_{2} \in \Delta^{n}$ and $0 \leq i \leq m$ (see Figure 3).
Denote $\pi_{m, n}(a, b) \in \Delta^{m, n}$ by $\langle a, b\rangle$ for $(a, b) \in \Delta^{m} \times \Delta^{n}$. Then we have the face operators $\left\{\beta_{i}: \Delta^{m-1, n} \rightarrow \Delta^{m, n}\right\}_{0 \leq i \leq m}$ and $\left\{\beta_{j}^{\prime}: \Delta^{m, n-1} \rightarrow \Delta^{m, n}\right\}_{0 \leq j \leq n}$ given by $\beta_{i}(\langle a, b\rangle)=\left\langle\partial_{i}(a), b\right\rangle$ and $\beta_{j}^{\prime}(\langle a, b\rangle)=\left\langle a, \partial_{j}(b)\right\rangle$. Moreover, the degeneracy operators $\left\{\gamma_{k}: \Delta^{m, n} \rightarrow \Delta^{m-1, n}\right\}_{1 \leq k \leq m}$ and $\left\{\gamma_{l}^{\prime}: \Delta^{m, n} \rightarrow \Delta^{m, n-1}\right\}_{1 \leq l \leq n}$ are defined by $\gamma_{k}(\langle a, b\rangle)=\left\langle s_{k}(a), b\right\rangle$ and $\gamma_{l}^{\prime}(\langle a, b\rangle)=\left\langle a, s_{l}(b)\right\rangle$.

Now as in the case of $[0, m] \times[0, n]$, we label the edge $v_{i-1} v_{i} \times\left\{v_{j}\right\}$ of $\Delta^{m, n}$ by x_{i} for $1 \leq i \leq m, 0 \leq j \leq n$ and the edge $\left\{v_{i}\right\} \times v_{j-1} v_{j}$ of $\Delta^{m, n}$ by y_{j} for $0 \leq i \leq m, 1 \leq j \leq n$ (see Figure 3). Put

$$
\mathscr{K}_{m, n}=\left\{\ell:[0, m+n] \rightarrow \Delta^{m, n} \mid \ell(0)=\left\langle v_{0}, v_{0}\right\rangle \text { and } \ell(m+n)=\left\langle v_{m}, v_{n}\right\rangle\right\} .
$$

Then any lattice path $\ell \in \mathscr{L}_{m, n}$ can be regarded as $\ell \in \mathscr{K}_{m, n}$ (see Figure 4). Let $\widetilde{\kappa}_{m, n}: v\left(N_{m, n}\right) \rightarrow \mathscr{K}_{m, n}$ be defined by $\widetilde{\kappa}_{m, n}\left(\left(p_{0}^{\ell}, \ldots, p_{m}^{\ell}, q_{0}^{\ell}, \ldots, q_{n}^{\ell}\right)\right)=\ell$. Since $N_{m, n}$ is the convex hull of $v\left(N_{m, n}\right)$:

Figure 3. The projection $\pi_{2,1}$.

Figure 4. The lattice paths $\ell_{1}=x_{1} x_{2} y_{1}, \ell_{2}=x_{1} y_{1} x_{2}$ and $\ell_{3}=y_{1} x_{1} x_{2}$ in $\mathscr{K}_{2,1}$.

$$
N_{m, n}=\left\{\sum_{1 \leq i \leq k} t_{i} a_{i} \mid a_{i} \in v\left(N_{m, n}\right) \text { and } t_{i} \in \boldsymbol{R}^{+} \text {with } \sum_{1 \leq i \leq k} t_{i}=1\right\}
$$

we extend $\widetilde{\kappa}_{m, n}$ to $\kappa_{m, n}: N_{m, n} \rightarrow \mathscr{K}_{m, n}$ by

$$
\begin{equation*}
\kappa_{m, n}\left(\sum_{1 \leq i \leq k} t_{i} a_{i}\right)(s)=\sum_{1 \leq i \leq k} t_{i} \widetilde{\kappa}_{m, n}\left(a_{i}\right)(s) \quad \text { for } s \in[0, m+n] \tag{2.5}
\end{equation*}
$$

3. Permutohedra.

The n-th symmetric group Σ_{n} acts on \boldsymbol{R}^{n} by the permutation of the factors. Put $\boldsymbol{n}=(1, \ldots, n) \in \boldsymbol{R}^{n}$. According to Milgram [16, Definition 4.1], the permutohedron P_{n} is an $(n-1)$-dimensional polytope defined by the convex hull of $\left\{\sigma(\boldsymbol{n}) \in \boldsymbol{R}^{n} \mid \sigma \in \Sigma_{n}\right\}$ for $n \geq 1$. From the construction, there is a natural way to describe all the faces of P_{n}.

Let $u_{1}, \ldots, u_{m} \geq 1$ with $u_{1}+\cdots+u_{m}=n$. A partition of \boldsymbol{n} of type $\left(u_{1}, \ldots, u_{m}\right)$ is an ordered sequence $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ consisting of disjoint subsequences α_{i} of length u_{i} for $1 \leq i \leq m$ with $\alpha_{1} \cup \cdots \cup \alpha_{m}=\boldsymbol{n}$ as sets (see [11, p. 107], [12, p. 3826]). Then there is a correspondence between the faces of P_{n} and the partitions of \boldsymbol{n} into at least two disjoint parts (see [11, p.107]). In particular, a facet of P_{n} is represented by a partition of \boldsymbol{n} into just two disjoint parts.

Consider the subspace T_{n} of \boldsymbol{R}^{n} defined by

$$
T_{n}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \boldsymbol{R}^{n} \left\lvert\, \sum_{1 \leq i \leq n} t_{i}=\frac{n(n+1)}{2}\right.\right\} \quad \text { for } n \geq 1
$$

Put

$$
T\left(\alpha_{1}, \alpha_{2}\right)=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \boldsymbol{R}^{n} \left\lvert\, \sum_{1 \leq i \leq u_{1}} t_{\alpha_{1}(i)} \geq \frac{u_{1}\left(u_{1}+1\right)}{2}\right.\right\}
$$

and

$$
\partial T\left(\alpha_{1}, \alpha_{2}\right)=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \boldsymbol{R}^{n} \left\lvert\, \sum_{1 \leq i \leq u_{1}} t_{\alpha_{1}(i)}=\frac{u_{1}\left(u_{1}+1\right)}{2}\right.\right\},
$$

where $\left(\alpha_{1}, \alpha_{2}\right)$ is a partition of \boldsymbol{n} of type $\left(u_{1}, u_{2}\right)$. From the definition,

$$
P_{n}=T_{n} \cap \bigcap_{\left(\alpha_{1}, \alpha_{2}\right)} T\left(\alpha_{1}, \alpha_{2}\right)
$$

whose boundary ∂P_{n} is given by

$$
\partial P_{n}=\bigcup_{\left(\alpha_{1}, \alpha_{2}\right)} P\left(\alpha_{1}, \alpha_{2}\right) \quad \text { with } \quad P\left(\alpha_{1}, \alpha_{2}\right)=P_{n} \cap \partial T\left(\alpha_{1}, \alpha_{2}\right),
$$

where (α_{1}, α_{2}) covers all partitions of \boldsymbol{n} into two disjoint parts (see Figure 5). By [16, Lemma 4.2], the facet $P\left(\alpha_{1}, \alpha_{2}\right)$ is affinely homeomorphic to $P_{u_{1}} \times P_{u_{2}}$ by the face operator $\varepsilon^{\left(\alpha_{1}, \alpha_{2}\right)}: P_{u_{1}} \times P_{u_{2}} \rightarrow P\left(\alpha_{1}, \alpha_{2}\right)$. Moreover, we have the degeneracy operators $\left\{d_{k}: P_{n} \rightarrow P_{n-1}\right\}_{1 \leq k \leq n}$ with the relations in [16, Lemma 4.5].

Now we recall that a permutation $\sigma \in \Sigma_{m+n}$ is called an (m, n)-shuffle if

$$
\sigma(1)<\cdots<\sigma(m) \quad \text { and } \quad \sigma(m+1)<\cdots<\sigma(m+n) \quad \text { for } m, n \geq 1 \text {. }
$$

Figure 5. The permutohedron P_{3}.

We denote the set of all (m, n)-shuffles by $\mathscr{S}_{m, n}$. Then there is a bijection between $\mathscr{S}_{m, n}$ and $\mathscr{L}_{m, n}$. In fact, if $\sigma \in \mathscr{S}_{m, n}$, then putting x_{i} on the $\sigma(i)$-th place for $1 \leq i \leq m$ and y_{j} on the $\sigma(m+j)$-th place for $1 \leq j \leq n$, we have a shuffle of $x_{1} \cdots x_{m}$ and $y_{1} \cdots y_{n}$ which is the label of some lattice path $\ell \in \mathscr{L}_{m, n}$. For example, the $(4,3)$-shuffle

$$
\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 3 & 4 & 6 & 2 & 5 & 7
\end{array}\right) \in \mathscr{S}_{4,3}
$$

is corresponding to the lattice path $\ell \in \mathscr{L}_{4,3}$ labeled by $x_{1} y_{1} x_{2} x_{3} y_{2} x_{4} y_{3}$ (see Figure $1)$.

Proposition 3.1 ([9, Chapter 12, Proposition 2.6]). The resultohedron $N_{m, n}$ is embedded in P_{m+n} as

$$
N_{m, n}=P_{m+n} \cap \bigcap_{1 \leq i \leq m-1} H_{i} \cap \bigcap_{1 \leq j \leq n-1} H_{j}^{\prime} \quad \text { for } m, n \geq 1
$$

which is the convex hull of $\left\{\sigma(1, \ldots, m+n) \in \boldsymbol{R}^{m+n} \mid \sigma \in \mathscr{S}_{m, n}\right\}$, where

$$
H_{i}=\left\{\left(t_{1}, \ldots, t_{m+n}\right) \in \boldsymbol{R}^{m+n} \mid t_{i+1} \geq t_{i}+1\right\} \quad \text { for } 1 \leq i \leq m-1
$$

and

$$
H_{j}^{\prime}=\left\{\left(t_{1}, \ldots, t_{m+n}\right) \in \boldsymbol{R}^{m+n} \mid t_{m+j+1} \geq t_{m+j}+1\right\} \quad \text { for } 1 \leq j \leq n-1
$$

Figure 6. The resultohedron $N_{2,1}$.

Remark 3.2. In (2.1), the resultohedron $N_{m, n}$ is defined in \boldsymbol{R}^{m+n+2}. Proposition 3.1 implies that $N_{m, n}$ is considered as a subspace of \boldsymbol{R}^{m+n}.

In the proof of Proposition 4.5, we need the following result proved by Hemmi [11] and Kapranov-Voevodsky [14]:

Proposition 3.3 ([11, p. 108, (5.1)], [14, Theorem 6.5]).
(1) The permutohedron P_{n+1} is decomposed by the subspaces $\Gamma\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ as

$$
P_{n+1}=\bigcup_{\left(\alpha_{1}, \ldots, \alpha_{m}\right)} \Gamma\left(\alpha_{1}, \ldots, \alpha_{m}\right) \quad \text { for } n \geq 1
$$

where $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ covers all partitions of \boldsymbol{n} with $m \geq 1$.
(2) If $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ is a partition of \boldsymbol{n} of type $\left(u_{1}, \ldots, u_{m}\right)$, then $\Gamma\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ is affinely homeomorphic to $N_{m, 1} \times P_{u_{1}} \times \cdots \times P_{u_{m}}$ by an operator $\iota^{\left(\alpha_{1}, \ldots, \alpha_{m}\right)}: N_{m, 1} \times P_{u_{1}} \times \cdots \times P_{u_{m}} \rightarrow \Gamma\left(\alpha_{1}, \ldots, \alpha_{m}\right)$.

Figure 7. The decomposition of P_{3}.
For the decomposition of the 4 -th permutohedron P_{4}, see $[\mathbf{1 4}$, p. 245, Figure 15]. By Proposition 3.1, $N_{m, 1}$ is embedded in P_{m+1}. Then the inclusion $N_{m, 1} \subset P_{m+1}$ is corresponding to the operator $\iota^{((1), \ldots,(m))}: N_{m, 1} \times P_{1} \times \cdots \times P_{1} \rightarrow$ $\Gamma((1), \ldots,(m)) \subset P_{m+1}$ in Proposition 3.3 (see Figures 6 and 7).

4. Higher homotopy commutativity.

Sugawara [19] introduced the concept of strongly homotopy multiplicativity for maps between topological monoids. Later Stasheff $[\mathbf{1 7}]$ expanded his definition, and introduced the concept of A_{n}-map for $n \geq 1$. Let X and Y be topological monoids and $n \geq 1$. A map $\phi: X \rightarrow Y$ is called an A_{n}-map if there is a family of maps $\left\{F_{i}: I^{i-1} \times X^{i} \rightarrow Y\right\}_{1 \leq i \leq n}$ such that $F_{1}(x)=\phi(x)$ and

$$
\begin{aligned}
& F_{i}\left(t_{1}, \ldots, t_{i-1}, x_{1}, \ldots, x_{i}\right) \\
& \quad= \begin{cases}F_{i-1}\left(t_{1}, \ldots, t_{j-1}, t_{j+1}, \ldots, t_{i-1}, x_{1}, \ldots, x_{j} \cdot x_{j+1}, \ldots, x_{i}\right) & \text { if } t_{j}=0 \\
F_{j}\left(t_{1}, \ldots, t_{j-1}, x_{1}, \ldots, x_{j}\right) \cdot F_{i-j}\left(t_{j+1}, \ldots, t_{i-1}, x_{j+1}, \ldots, x_{i}\right) & \text { if } t_{j}=1\end{cases}
\end{aligned}
$$

for $1 \leq j \leq i-1$.
From the definition, an A_{2}-map is just an H-map, and an A_{3}-map is an H map preserving the homotopy associativity. Moreover, an A_{∞}-map is the same as a strongly homotopy multiplicative map.

Using the strongly homotopy multiplicativity, Sugawara gave a criterion for the classifying space of a topological monoid to be an H-space (see also Stasheff [18, p. 71, Theorem 14.1]):

Theorem 4.1 ([19]). Let X be a topological monoid. The multiplication $\mu: X^{2} \rightarrow X$ is strongly homotopy multiplicative if and only if the classifying space $B X$ is an H-space.

In Theorem 4.1, the condition of strongly homotopy multiplicativity for $\mu: X^{2} \rightarrow X$ can be regarded as a higher homotopy commutativity for μ. In fact, we see that $\mu: X^{2} \rightarrow X$ is an H-map if and only if μ is a homotopy commutative multiplication of X.

Generalizing Theorem 4.1, we have the following result:
Proposition 4.2. Let X be a topological monoid. The multiplication μ : $X^{2} \rightarrow X$ is an A_{n}-map if and only if $B X$ is an $H(n)$-space for $n \geq 1$.

The proof of Proposition 4.2 is given in Section 5.
Now we define a $C_{k}(n)$-space. Let $n \geq 1$ and $1 \leq k \leq n$. Put

$$
\Lambda_{k}(n)=\left\{(r, s) \in \boldsymbol{Z}^{2} \mid r, s \geq 0,1 \leq r+s \leq n \text { and } s \leq k\right\} .
$$

Definition 4.3. Let $n \geq 1$ and $1 \leq k \leq n$. A topological monoid X is called a $C_{k}(n)$-space if there is a family of maps $\left\{Q_{r, s}: N_{r, s} \times X^{r+s} \rightarrow X\right\}_{(r, s) \in \Lambda_{k}(n)}$ with the following relations:

$$
\begin{align*}
& Q_{r, 0}\left(*, x_{1}, \ldots, x_{r}\right)=x_{1} \cdots x_{r} \quad \text { and } \quad Q_{0, s}\left(*, y_{1}, \ldots, y_{s}\right)=y_{1} \cdots y_{s} . \tag{4.1}\\
& Q_{r, s}\left(\varepsilon^{\left(p_{i}\right)}(a), x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \\
& \quad= \begin{cases}x_{1} \cdot Q_{r-1, s}\left(a, x_{2}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) & \text { if } i=0 \\
Q_{r-1, s}\left(a, x_{1}, \ldots, x_{i} \cdot x_{i+1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) & \text { if } 0<i<r \\
Q_{r-1, s}\left(a, x_{1}, \ldots, x_{r-1}, y_{1}, \ldots, y_{s}\right) \cdot x_{r} & \text { if } i=r .\end{cases} \tag{4.2}
\end{align*}
$$

$$
\begin{align*}
& Q_{r, s}\left(\varepsilon^{\left(q_{j}\right)}(a), x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \\
& \quad= \begin{cases}y_{1} \cdot Q_{r, s-1}\left(a, x_{1}, \ldots, x_{r}, y_{2}, \ldots, y_{s}\right) & \text { if } j=0 \\
Q_{r, s-1}\left(a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{j} \cdot y_{j+1}, \ldots, y_{s}\right) & \text { if } 0<j<s \\
Q_{r, s-1}\left(a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s-1}\right) \cdot y_{s} & \text { if } j=s\end{cases} \tag{4.3}\\
& Q_{r, s}\left(\varepsilon^{\left(h_{i, j}\right)}(a, b), x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \\
& \quad=Q_{i, j}\left(a, x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{j}\right) \cdot Q_{r-i, s-j}\left(b, x_{i+1}, \ldots, x_{r}, y_{j+1}, \ldots, y_{s}\right) \tag{4.4}
\end{align*}
$$

for $0<i<r$ and $0<j<s$.

$$
\begin{align*}
& Q_{r, s}\left(a, x_{1}, \ldots, x_{i-1}, *, x_{i+1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \\
& \quad=Q_{r-1, s}\left(\delta_{i}(a), x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \quad \text { for } 1 \leq i \leq r \\
& Q_{r, s}\left(a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{j-1}, *, y_{j+1}, \ldots, y_{s}\right) \tag{4.5}\\
& \quad=Q_{r, s-1}\left(\delta_{j}^{\prime}(a), x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{s}\right) \quad \text { for } 1 \leq j \leq s
\end{align*}
$$

Remark 4.4.

(1) Any topological monoid is a $C_{1}(1)$-space, and a $C_{k}(2)$-space is a topological monoid whose multiplication is homotopy commutative for $k=1,2$.
(2) An abelian topological monoid has a $C_{\infty}(\infty)$-structure:

$$
Q_{r, s}\left(a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)=x_{1} \cdots x_{r} \cdot y_{1} \cdots y_{s} \quad \text { for } r, s \geq 1
$$

In particular, Eilenberg-Mac Lane spaces have the homotopy type of $C_{\infty}(\infty)$ spaces.

Williams [22] considered another type of higher homotopy commutativity using the permutohedra. Let $n \geq 1$. A topological monoid X is called a C_{n}-space if there is a family of maps $\left\{Q_{i}: P_{i} \times X^{i} \rightarrow X\right\}_{1 \leq i \leq n}$ with the following relations:

$$
\begin{align*}
& Q_{1}(*, x)=x \tag{4.6}\\
& Q_{i}\left(\varepsilon^{\left(\alpha_{1}, \alpha_{2}\right)}\left(c_{1}, c_{2}\right), x_{1}, \ldots, x_{i}\right) \\
& \quad=Q_{u_{1}}\left(c_{1}, x_{\alpha_{1}(1)}, \ldots, x_{\alpha_{1}\left(u_{1}\right)}\right) \cdot Q_{u_{2}}\left(c_{2}, x_{\alpha_{2}(1)}, \ldots, x_{\alpha_{2}\left(u_{2}\right)}\right), \tag{4.7}
\end{align*}
$$

where $\left(\alpha_{1}, \alpha_{2}\right)$ is a partition of \boldsymbol{i} of type $\left(u_{1}, u_{2}\right)$.

$$
\begin{equation*}
Q_{i}\left(c, x_{1}, \ldots, x_{j-1}, *, x_{j+1}, \ldots, x_{i}\right)=Q_{i-1}\left(d_{j}(c), x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{i}\right) \tag{4.8}
\end{equation*}
$$

for $1 \leq j \leq i$.
Proposition 4.5. Let $n \geq 1$ and $1 \leq k \leq n$. If X is a $C_{k}(n)$-space, then X is a C_{n}-space.

Proof. Since a $C_{k}(n)$-space is a $C_{k-1}(n)$-space for $1<k \leq n$, it is enough to prove the case of $k=1$.

We work by induction on n. The result is clear for $n=1$. Assume that the result is proved for n, and consider the case of $n+1$. Let X be a $C_{1}(n+1)$ space. Since a $C_{1}(n+1)$-space is a $C_{1}(n)$-space, by inductive hypothesis, there is a C_{n}-structure $\left\{Q_{i}\right\}_{1 \leq i \leq n}$ on X. By Proposition 3.3, we can define $Q_{n+1}: P_{n+1} \times$ $X^{n+1} \rightarrow X$ by

$$
\begin{aligned}
& Q_{n+1}\left(\iota^{\left(\alpha_{1}, \ldots, \alpha_{m}\right)}\left(a, c_{1}, \ldots, c_{m}\right), x_{1}, \ldots, x_{n+1}\right) \\
& \quad=Q_{m, 1}\left(a, Q_{u_{1}}\left(c_{1}, x_{\alpha_{1}(1)}, \ldots, x_{\alpha_{1}\left(u_{1}\right)}\right), \ldots\right. \\
& \left.\quad Q_{u_{m}}\left(c_{m}, x_{\alpha_{m}(1)}, \ldots, x_{\alpha_{m}\left(u_{m}\right)}\right), x_{n+1}\right)
\end{aligned}
$$

where $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ is a partition of \boldsymbol{n} of type $\left(u_{1}, \ldots, u_{m}\right)$ with $m \geq 1$ (see Figure 8). Then $\left\{Q_{i}\right\}_{1 \leq i \leq n+1}$ is a C_{n+1}-structure on X. This completes the proof.

Figure 8. The C_{3}-structure on X.
Let $S^{2 t-1}$ denote the $(2 t-1)$-sphere for $t \geq 1$. Then the p-completion $\left(S^{2 t-1}\right)_{p}^{\wedge}$ is a topological monoid if and only if $t=1,2$ for $p=2$ and $t \mid(p-1)$ for $p>2$, where p is a prime (cf. [13, pp. 172-173, Section 24-2]).

Proposition 4.6.

(1) $\left(S^{1}\right)_{p}^{\wedge}$ is a $C_{\infty}(\infty)$-space.
(2) $\left(S^{3}\right)_{2}^{\wedge}$ is a $C_{1}(1)$-space, but not a $C_{1}(2)$-space.
(3) Let $p>2$ and $t>1$ with $t \mid(p-1)$. Put $n=(p-1) / t$. Then $\left(S^{2 t-1}\right)_{p}^{\wedge}$ is a $C_{n}(n)$-space, but not a $C_{1}(n+1)$-space.

Proof. We have (1) and (2) by Remark 4.4.
We consider the case of (3). Put $W=\left(S^{2 t-1}\right)_{p}$. We first construct a $C_{n}(n)$ structure $\left\{Q_{r, s}\right\}_{1 \leq r+s \leq n}$ on W. Assume inductively that $\left\{Q_{r, s}\right\}_{1 \leq r+s<m}$ are constructed for some $m \leq n$. Then the obstructions to the existence of $Q_{r, s}$ with $r+s=m$ belong to the cohomology groups:

$$
\begin{align*}
& H^{j+1}\left(N_{r, s} \times W^{m}, \partial N_{r, s} \times W^{m} \cup N_{r, s} \times W^{[m]} ; \pi_{j}(W)\right) \\
& \cong \widetilde{H}^{j+2}\left(\left(S^{2 t m}\right)_{p}^{\wedge} ; \pi_{j}(W)\right) \quad \text { for } j \geq 1 \tag{4.9}
\end{align*}
$$

since $N_{r, s} \times W^{m} /\left(\partial N_{r, s} \times W^{m} \cup N_{r, s} \times W^{[m]}\right) \simeq\left(S^{2 t m-1}\right)_{p}$, where $Y^{[m]}$ denotes the m-fold fat wedge of a space Y given by

$$
Y^{[m]}=\left\{\left(y_{1}, \ldots, y_{m}\right) \in Y^{m} \mid y_{i}=* \text { for some } 1 \leq i \leq m\right\} \quad \text { for } m \geq 1
$$

This implies that (4.9) is non-trivial only if j is an even integer with $j<2 p-2$ since $t m \leq t n=p-1$. On the other hand, $\pi_{j}(W)=0$ for any even integer j with $j<2 p-2$ by Toda [20, Theorem 13.4]. Thus (4.9) is trivial for all j, and we have a map $Q_{r, s}$ with $r+s=m$. This completes the induction, and we have a $C_{n}(n)$-structure $\left\{Q_{r, s}\right\}_{1 \leq r+s \leq n}$ on W.

We next show that W is not a $C_{1}(n+1)$-space. Assume contrarily that W is a $C_{1}(n+1)$-space. Then by Proposition $4.5, W$ is a C_{n+1}-space, which is a contradiction by [11, Theorems 2.2 and 2.4(4)]. This completes the proof.

An H-space X is called \boldsymbol{F}_{p}-finite if the cohomology $H^{*}\left(X ; \boldsymbol{F}_{p}\right)$ is finite dimensional, and is called Postnikov if the homotopy groups $\pi_{j}(X)$ vanish above some dimension. For example, any Lie group is an \boldsymbol{F}_{p}-finite H-space. On the other hand, Eilenberg-Mac Lane spaces $K(\boldsymbol{Z}, n)$ are always Postnikov, but not \boldsymbol{F}_{p}-finite for $n>1$.

By Hemmi-Kawamoto [12, Corollaries 1.1 and 3.6] and Kawamoto [15, Theorem B], Proposition 4.5 implies the following corollary:

Corollary 4.7. Let X be a connected $C_{k}(p)$-space, where p is a prime and $1 \leq k \leq p$.
(1) If X is \boldsymbol{F}_{p}-finite, then the p-completion X_{p}^{\wedge} is a p-completed torus.
(2) If the cohomology $H^{*}\left(X ; \boldsymbol{F}_{p}\right)$ of X is finitely generated as an algebra over the Steenrod algebra \mathscr{A}_{p}^{*}, then the p-completion X_{p}^{\wedge} is Postnikov.

Bousfield [3, Theorem 7.2] determined the $K(n)_{*}$-localizations for Postnikov H-spaces, where $K(n)_{*}$ denotes the Morava K-homology theory for $n \geq 1$. By his
result and Corollary $4.7(2)$, if X is a connected $C_{k}(p)$-space with finitely generated cohomology over \mathscr{A}_{p}^{*}, then the $K(n)_{*}$-localization $L_{K(n) *}\left(X_{p}^{\wedge}\right)$ of X_{p}^{\wedge} is the $(n+1)$ st stage for the modified Postnikov system of X_{p}^{\wedge} (see [3, p. 2408]).

5. Proofs of Theorems A and B.

Consider the loop space ΩZ of a space Z in the sense of Moore (cf. [13, p. 45, Section 5-3 (iii)], [18, p. 14, Definition 4.1]). Then we may assume that the multiplication of ΩZ is strictly associative. Recall the definition of the projective spaces $\left\{P_{n}(\Omega Z)\right\}_{n \geq 0}$ of ΩZ. Put $P_{0}(\Omega Z)=\{*\}$, and define $P_{n}(\Omega Z)$ for $n \geq 1$ by

$$
P_{n}(\Omega Z)=P_{n-1}(\Omega Z) \cup_{\Psi_{n}} \Delta^{n} \times(\Omega Z)^{n},
$$

where $\Psi_{n}: \partial \Delta^{n} \times(\Omega Z)^{n} \cup \Delta^{n} \times(\Omega Z)^{[n]} \rightarrow P_{n-1}(\Omega Z)$ is given by the following relations:

$$
\begin{align*}
& \Psi_{n}\left(\partial_{i}(a), \omega_{1}, \ldots, \omega_{n}\right)= \begin{cases}\Psi_{n-1}\left(a, \omega_{2}, \ldots, \omega_{n}\right) & \text { if } i=0 \\
\Psi_{n-1}\left(a, \omega_{1}, \ldots, \omega_{i} \cdot \omega_{i+1}, \ldots, \omega_{n}\right) & \text { if } 0<i<n \\
\Psi_{n-1}\left(a, \omega_{1}, \ldots, \omega_{n-1}\right) & \text { if } i=n .\end{cases} \tag{5.1}\\
& \Psi_{n}\left(a, \omega_{1}, \ldots, \omega_{j-1}, *, \omega_{j+1}, \ldots, \omega_{n}\right) \\
& \quad=\Psi_{n-1}\left(s_{j}(a), \omega_{1}, \ldots, \omega_{j-1}, \omega_{j+1}, \ldots, \omega_{n}\right) \quad \text { for } 1 \leq j \leq n . \tag{5.2}
\end{align*}
$$

Then we have the inclusions $P_{1}(\Omega Z)=\Sigma \Omega Z \subset P_{2}(\Omega Z) \subset P_{3}(\Omega Z) \subset \ldots$. Put

$$
P_{\infty}(\Omega Z)=\bigcup_{n \geq 1} P_{n}(\Omega Z)
$$

Let $\eta_{n}=\widetilde{\varepsilon}_{n}\left(\rho_{n} \times 1_{(\Omega Z)^{n}}\right): \Delta^{n} \times(\Omega Z)^{n} \rightarrow Z$, where $\widetilde{\varepsilon}_{n}:[0, n] \times(\Omega Z)^{n} \rightarrow Z$ is defined by $\widetilde{\varepsilon}_{n}\left(t, \omega_{1}, \ldots, \omega_{n}\right)=\omega_{i}(t-i+1)$ if $t \in[i-1, i]$ for $1 \leq i \leq n$. Then $\left\{\eta_{n}\right\}_{n \geq 1}$ induces a family of maps $\left\{\varepsilon_{n}: P_{n}(\Omega Z) \rightarrow Z\right\}_{n \geq 1}$ such that $\varepsilon_{1}: \Sigma \Omega Z \rightarrow$ Z is the evaluation map and $\left.\varepsilon_{n}\right|_{P_{n-1}(\Omega Z)}=\varepsilon_{n-1}: P_{n-1}(\Omega Z) \rightarrow Z$ for $n>1$. Moreover, $\varepsilon_{\infty}: P_{\infty}(\Omega Z) \rightarrow Z$ is a homotopy equivalence (cf. [13, p. 55, Section $6-5]$, [18, p. 18, Theorem 4.8]).

If Z is an H-space, then identifying Z with $P_{\infty}(\Omega Z)$, we can restrict the multiplication $Z^{2} \rightarrow Z$ to an axial map $P_{m}(\Omega Z) \times P_{n}(\Omega Z) \rightarrow Z$ for any $m, n \geq 1$. From this fact, we introduce the concept of $H_{k}(n)$-space.

Definition 5.1. Let $n \geq 1$ and $1 \leq k \leq n$. A space Z is called an $H_{k}(n)$ space if there is a map

$$
\psi_{k}(n): \bigcup_{0 \leq s \leq k} P_{n-s}(\Omega Z) \times P_{s}(\Omega Z) \rightarrow Z
$$

with $\psi_{k}(n)(z, *)=\varepsilon_{n}(z)$ for $z \in P_{n}(\Omega Z)$ and $\psi_{k}(n)(*, w)=\varepsilon_{k}(w)$ for $w \in P_{k}(\Omega Z)$.
Let $B X$ denote the classifying space of a topological monoid X with $X \simeq$ $\Omega(B X)$. From the above construction, we have the projective spaces $\left\{P_{n}(X)\right\}_{n \geq 0}$ with the maps $\left\{\varepsilon_{n}: P_{n}(X) \rightarrow B X\right\}_{n \geq 1}$ such that $\varepsilon_{1}: \Sigma X \rightarrow B X$ is the adjoint of the homotopy equivalence $X \simeq \Omega(B X)$ and $\varepsilon_{\infty}: P_{\infty}(X) \rightarrow B X$ is a homotopy equivalence.

Now we prove Proposition 4.2 as follows:
Proof of Proposition 4.2. If $\mu: X^{2} \rightarrow X$ is an A_{n}-map, then by [17, p. 300, Theorem 4.5], we have the induced map $P_{n}(\mu): P_{n}\left(X^{2}\right) \rightarrow P_{n}(X)$ (see also $\left[18\right.$, p. 34, Theorem 8.4]). Put $\psi(n)=\varepsilon_{n} P_{n}(\mu): P_{n}\left(X^{2}\right) \rightarrow B X$. Then $\psi(n)$ is an $H(n)$-structure on $B X$ by [7, Definition 3$]$.

Conversely, we assume that there is an $H(n)$-structure $\psi(n): P_{n}\left(X^{2}\right) \rightarrow B X$ on $B X$. Then we can write $\mu=\Omega(\psi(n)) \iota_{n}: X^{2} \rightarrow \Omega(B X) \simeq X$, where $\iota_{n}: X^{2} \rightarrow$ $\Omega P_{n}\left(X^{2}\right)$ denotes the adjoint of the inclusion $\Sigma\left(X^{2}\right) \subset P_{n}\left(X^{2}\right)$. Since ι_{n} is an A_{n}-map by [18, p. 34, Theorem 8.6], so is μ. This completes the proof.

To prove Theorem A, we generalize the definition of the projective spaces, and construct a family of spaces $\left\{P_{m, n}(X)\right\}_{m, n \geq 0}$. Put $P_{0,0}(X)=\{*\}$, and define $P_{m, n}(X)$ for $m, n \geq 0$ with $m+n \geq 1$ by

$$
P_{m, n}(X)=P_{m-1, n}(X) \cup P_{m, n-1}(X) \cup_{\Psi_{m, n}} \Delta^{m, n} \times X^{m+n}
$$

where $\Psi_{m, n}: \partial \Delta^{m, n} \times X^{m+n} \cup \Delta^{m, n} \times X^{[m+n]} \rightarrow P_{m-1, n}(X) \cup P_{m, n-1}(X)$ is given by the following relations:

$$
\begin{align*}
& \Psi_{m, n}\left(\beta_{i}(a), x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \\
& \quad= \begin{cases}\Psi_{m-1, n}\left(a, x_{2}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) & \text { if } i=0 \\
\Psi_{m-1, n}\left(a, x_{1}, \ldots, x_{i} \cdot x_{i+1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) & \text { if } 0<i<m \\
\Psi_{m-1, n}\left(a, x_{1}, \ldots, x_{m-1}, y_{1}, \ldots, y_{n}\right) & \text { if } i=m .\end{cases} \tag{5.3}\\
& \quad \Psi_{m, n}\left(\beta_{j}^{\prime}(a), x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \\
& \quad= \begin{cases}\Psi_{m, n-1}\left(a, x_{1}, \ldots, x_{m}, y_{2}, \ldots, y_{n}\right) & \text { if } j=0 \\
\Psi_{m, n-1}\left(a, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{j} \cdot y_{j+1}, \ldots, y_{n}\right) & \text { if } 0<j<n \\
\Psi_{m, n-1}\left(a, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n-1}\right) & \text { if } j=n .\end{cases} \tag{5.4}
\end{align*}
$$

$$
\begin{align*}
& \Psi_{m, n}\left(a, x_{1}, \ldots, x_{i-1}, *, x_{i+1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \\
& \quad=\Psi_{m-1, n}\left(\gamma_{i}(a), x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \quad \text { for } 1 \leq i \leq m \\
& \Psi_{m, n}\left(a, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{j-1}, *, y_{j+1}, \ldots, y_{n}\right) \tag{5.5}\\
& \quad=\Psi_{m, n-1}\left(\gamma_{j}^{\prime}(a), x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{n}\right) \quad \text { for } 1 \leq j \leq n .
\end{align*}
$$

From the definition, we have $P_{1,0}(X)=P_{0,1}(X)=\Sigma X$. Since the projection $\pi_{m, n}: \Delta^{m} \times \Delta^{n} \rightarrow \Delta^{m, n}$ is compatible with the face operators and the degeneracy operators, $\pi_{m, n}$ induces a map $\widetilde{\pi}_{m, n}: P_{m}(X) \times P_{n}(X) \rightarrow P_{m, n}(X)$ for $m, n \geq 0$. In particular, we see that $\widetilde{\pi}_{1,0}: \Sigma X \times\{*\} \rightarrow \Sigma X$ and $\widetilde{\pi}_{0,1}:\{*\} \times \Sigma X \rightarrow \Sigma X$ are the projections.

Lemma 5.2. Let $n \geq 1$ and $1 \leq k \leq n$. If X is a topological monoid such that $B X$ has an $H_{k}(n)$-structure $\psi_{k}(n)$, then there is a map

$$
\widetilde{\psi}_{k}(n): \bigcup_{0 \leq s \leq k} P_{n-s, s}(X) \rightarrow B X \quad \text { with } \quad \widetilde{\psi}_{k}(n)\left(\bigcup_{0 \leq s \leq k} \widetilde{\pi}_{n-s, s}\right)=\psi_{k}(n) .
$$

Proof. Let $\theta_{r, s}: \Delta^{r} \times \Delta^{s} \times X^{r+s} \rightarrow B X$ be the composite of $\psi_{k}(n)$ with the inclusion

$$
\begin{aligned}
& \Delta^{r} \times \Delta^{s} \times X^{r+s} \rightarrow \Delta^{r} \times X^{r} \times \Delta^{s} \times X^{s} \\
& \quad \subset P_{r}(X) \times P_{s}(X) \subset \bigcup_{0 \leq s \leq k} P_{n-s}(X) \times P_{s}(X) \quad \text { for }(r, s) \in \Lambda_{k}(n),
\end{aligned}
$$

where the first arrow denotes the appropriate switching map. From the definition of $\psi_{k}(n)$, we have that

$$
\theta_{r, s}\left(a, v_{j}, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)=\eta_{r}\left(a, x_{1}, \ldots, x_{r}\right)=\widetilde{\varepsilon}_{r}\left(\rho_{r}(a), x_{1}, \ldots, x_{r}\right)
$$

for $0 \leq j \leq s$ and

$$
\theta_{r, s}\left(v_{i}, b, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)=\eta_{s}\left(b, y_{1}, \ldots, y_{s}\right)=\widetilde{\varepsilon}_{s}\left(\rho_{s}(b), y_{1}, \ldots, y_{s}\right)
$$

for $0 \leq i \leq r$, which implies that there is a map $\tilde{\theta}_{r, s}: \Delta^{r, s} \times X^{r+s} \rightarrow B X$ with $\widetilde{\theta}_{r, s}\left(\pi_{r, s} \times 1_{X^{r+s}}\right)=\theta_{r, s}$. Then $\left\{\widetilde{\theta}_{r, s}\right\}_{(r, s) \in \Lambda_{k}(n)}$ induces a map

$$
\widetilde{\psi}_{k}(n): \bigcup_{0 \leq s \leq k} P_{n-s, s}(X) \rightarrow B X
$$

with the required conditions. This completes the proof.
Proof of Theorem A. Assume that X is a $C_{k}(n)$-space and $\left\{Q_{r, s}\right\}_{(r, s) \in \Lambda_{k}(n)}$ is the $C_{k}(n)$-structure. From the same reason as in [23, p. 250], we may assume without loss of generality that the image of $Q_{r, s}$ lies in the set of loops of length $r+s$ in $X \simeq \Omega(B X)$. Consider the adjoint $\psi_{r, s}:[0, r+s] \times N_{r, s}$ $\times X^{r+s} \rightarrow B X$ of $Q_{r, s}$.

Let $\Phi_{r, s}:[0, r+s] \times N_{r, s} \rightarrow \Delta^{r, s}$ be the adjoint of $\kappa_{r, s}: N_{r, s} \rightarrow \mathscr{K}_{r, s}$ given in (2.5). Put $\widetilde{\Phi}_{r, s}=\left.\Phi_{r, s}\right|_{\partial\left([0, r+s] \times N_{r, s}\right)}: \partial\left([0, r+s] \times N_{r, s}\right) \rightarrow \partial \Delta^{r, s}$. From the definition, we have $\partial \Delta^{r, s} \cup_{\tilde{\Phi}_{r, s}}[0, r+s] \times N_{r, s}=\Delta^{r, s}$, and so $\Phi_{r, s}:([0, r+s]$ $\left.\times N_{r, s}, \partial\left([0, r+s] \times N_{r, s}\right)\right) \rightarrow\left(\Delta^{r, s}, \partial \Delta^{r, s}\right)$ is a relative homeomorphism. Then we have inductively a family of maps $\left\{\widetilde{\theta}_{r, s}: \Delta^{r, s} \times X^{r+s} \rightarrow B X\right\}_{(r, s) \in \Lambda_{k}(n)}$ with $\widetilde{\theta}_{r, 0}=\widetilde{\varepsilon}_{r}$ and $\widetilde{\theta}_{0, s}=\widetilde{\varepsilon}_{s}$, which implies that $\left\{\widetilde{\theta}_{r, s}\right\}_{(r, s) \in \Lambda_{k}(n)}$ induces a map

$$
\widetilde{\psi}_{k}(n): \bigcup_{0 \leq s \leq k} P_{n-s, s}(X) \rightarrow B X
$$

such that

$$
\psi_{k}(n)=\widetilde{\psi}_{k}(n)\left(\bigcup_{0 \leq s \leq k} \widetilde{\pi}_{n-s, s}\right): \bigcup_{0 \leq s \leq k} P_{n-s}(X) \times P_{s}(X) \rightarrow B X
$$

is an $H_{k}(n)$-structure on $B X$.
Conversely, we assume that $B X$ is an $H_{k}(n)$-space. Let $\widetilde{\theta}_{r, s}: \Delta^{r, s} \times X^{r+s} \rightarrow$ $B X$ denote the composite of $\widetilde{\psi}_{k}(n)$ with the inclusion

$$
\Delta^{r, s} \times X^{r+s} \subset P_{r, s}(X) \subset \bigcup_{0 \leq s \leq k} P_{n-s, s}(X) \quad \text { for }(r, s) \in \Lambda_{k}(n),
$$

where

$$
\tilde{\psi}_{k}(n): \bigcup_{0 \leq s \leq k} P_{n-s, s}(X) \rightarrow B X
$$

is given by Lemma 5.2. Consider the adjoint $Q_{r, s}: N_{r, s} \times X^{r+s} \rightarrow X$ of $\widetilde{\theta}_{r, s}\left(\Phi_{r, s} \times\right.$ $\left.1_{X^{r+s}}\right):[0, r+s] \times N_{r, s} \times X^{r+s} \rightarrow B X$. Then $\left\{Q_{r, s}\right\}_{(r, s) \in \Lambda_{k}(n)}$ is a $C_{k}(n)$-structure on X. This completes the proof of Theorem A.

Let $\boldsymbol{C} P^{\infty}$ be the infinite dimensional complex projective space. Then the cohomology is given by $H^{*}\left(\boldsymbol{C} P^{\infty} ; \boldsymbol{F}_{p}\right) \cong \boldsymbol{F}_{p}[u]$ with $\operatorname{deg} u=2$, where p is a prime.

Consider the homotopy fiber Z_{t} of the map $\phi_{t}: \boldsymbol{C} P^{\infty} \rightarrow K(\boldsymbol{Z} / p, 2 t)$ corresponding to the class $u^{t} \in H^{2 t}\left(\boldsymbol{C} P^{\infty} ; \boldsymbol{F}_{p}\right)$ for $t \geq 1$. Put $X_{t}=\Omega Z_{t}$ for $t \geq 1$.

Proposition 5.3.
(1) If $t=p^{a}$ for some $a \geq 0$, then X_{t} is a $C_{\infty}(\infty)$-space.
(2) Assume $t=p^{a} b$ for $a \geq 0$ and $b>1$ with $b \not \equiv 0 \bmod p$. Then X_{t} is a $C_{k}(n)$-space if $k<p^{a}$ or $n<t$, but not a $C_{p^{a}}(t)$-space.

We remark that Proposition 5.3 is a generalization of the result by Aguadé [1, Proposition 4.2].

To prove Proposition 5.3, we need the following lemma:
Lemma 5.4. Consider the homotopy commutative diagram:

where the top horizontal arrow is a fibration sequence and (K, L) is a relative $C W$ complex. Assume that (K, L) has the extension property with respect to ΩB, that is, for any map $d: L \rightarrow \Omega B$, there is a map $\widetilde{d}: K \rightarrow \Omega B$ with $\left.\widetilde{d}\right|_{L}=d$. If there is a lift $\widetilde{f}: K \rightarrow F$ with $\iota \widetilde{f} \simeq f$, then we have a map $h: K \rightarrow F$ with $\iota h \simeq f$ and $\left.h\right|_{L}=g$.

Proof. Let $\nu: \Omega B \times F \rightarrow F$ be the natural action of the principal fibration (5.6). Since $\left.\left.\iota \widetilde{f}\right|_{L} \simeq f\right|_{L} \simeq \iota g$, there is a map $d: L \rightarrow \Omega B$ with $\nu\left(d \times\left.\widetilde{f}\right|_{L}\right) \Delta_{L} \simeq g$. From the assumption, we have a map $\widetilde{d}: K \rightarrow \Omega B$ with $\left.\widetilde{d}\right|_{L}=d$. Put $\widetilde{g}=\nu(\widetilde{d} \times$ $\widetilde{f}) \Delta_{K}: K \rightarrow F$. Then $\iota \widetilde{g}=\iota \nu(\widetilde{d} \times \widetilde{f}) \Delta_{K} \simeq \iota \widetilde{f} \simeq f$ and $\left.\widetilde{g}\right|_{L}=\nu\left(d \times\left.\widetilde{f}\right|_{L}\right) \Delta_{L} \simeq g$. From the homotopy extension property with respect to (K, L), we have a map $h: K \rightarrow F$ with $h \simeq \widetilde{g}$ and $\left.h\right|_{L}=g$. This completes the proof.

Proof of Proposition 5.3.

(1) If $t=p^{a}$ for some $a \geq 0$, then Z_{t} is an H-space, and so the result follows from Corollary 1.1.
(2) We first prove that if $k<p^{a}$ or $n<t$, then X is a $C_{k}(n)$-space. Put

$$
K=\bigcup_{0 \leq s \leq k} P_{n-s}\left(X_{t}\right) \times P_{s}\left(X_{t}\right) \quad \text { and } \quad L=P_{n}\left(X_{t}\right) \vee P_{k}\left(X_{t}\right)
$$

Let $f: K \rightarrow \boldsymbol{C} P^{\infty}$ be the composite of $\mu\left(\iota_{t}\right)^{2}:\left(Z_{t}\right)^{2} \rightarrow \boldsymbol{C} P^{\infty}$ with the inclusion
$K \subset\left(Z_{t}\right)^{2}$, where μ is the multiplication of $\boldsymbol{C} P^{\infty}$ and $\iota_{t}: Z_{t} \rightarrow \boldsymbol{C} P^{\infty}$ denotes the fiber inclusion. We define $g: L \rightarrow Z_{t}$ by $g(z, *)=\varepsilon_{n}(z)$ for $z \in P_{n}\left(X_{t}\right)$ and $g(*, w)=\varepsilon_{k}(w)$ for $w \in P_{k}\left(X_{t}\right)$. Then $\left.f\right|_{L} \simeq \iota_{t} g$. Put $\xi_{i}=\left(\iota_{t} \varepsilon_{i}\right)^{\#}(u) \in$ $H^{2}\left(P_{i}\left(X_{t}\right) ; \boldsymbol{F}_{p}\right)$ for $i \geq 1$.

If $k<p^{a}$, then

$$
\begin{aligned}
\left(\phi_{t} f\right)^{\#}\left(\iota_{2 t}\right)=f^{\#}(u)^{t} & =\left(\xi_{n} \otimes 1+1 \otimes \xi_{k}\right)^{p^{a} b} \\
& =\left(\left(\xi_{n}\right)^{p^{a}} \otimes 1+1 \otimes\left(\xi_{k}\right)^{p^{a}}\right)^{b} \\
& =\left(\xi_{n}\right)^{t} \otimes 1=\left(\varepsilon_{n}\right)^{\#}\left(\left(\iota_{t}\right)^{\#}(u)^{t}\right) \otimes 1=0,
\end{aligned}
$$

and so there is a map $\psi_{k}(n): K \rightarrow Z_{t}$ with $\left.\psi_{k}(n)\right|_{L}=g$ and $\iota_{t} \psi_{k}(n) \simeq f$ by Lemma 5.4. This implies that Z_{t} is an $H_{k}(n)$-space, and so X_{t} is a $C_{k}(n)$-space by Theorem A.

In the case of $n<t,\left(\phi_{t} f\right)^{\#}\left(\iota_{2 t}\right)=f^{\#}(u)^{t}=0$ since cat $(K) \leq n$, and so by the same reason as above, X_{t} is a $C_{k}(n)$-space.

We next show that X_{t} is not a $C_{p^{a}}(t)$-space. Assume contrarily that X_{t} is a $C_{p^{a}}(t)$-space. Then Z_{t} is an $H_{p^{a}}(t)$-space by Theorem A. Let $f: P_{p^{a}(b-1)}\left(X_{t}\right) \times$ $P_{p^{a}}\left(X_{t}\right) \rightarrow Z_{t}$ denote the composite of $\psi_{p^{a}}(t)$ with the inclusion

$$
P_{p^{a}(b-1)}\left(X_{t}\right) \times P_{p^{a}}\left(X_{t}\right) \subset \bigcup_{0 \leq s \leq p^{a}} P_{t-s}\left(X_{t}\right) \times P_{s}\left(X_{t}\right),
$$

where $\psi_{p^{a}}(t)$ is the $H_{p^{a}}(t)$-structure on Z_{t}. Then we have

$$
\begin{aligned}
\left(\phi_{t} \iota_{t} f\right)^{\#}\left(\iota_{2 t}\right) & =\left(\xi_{p^{a}(b-1)} \otimes 1+1 \otimes \xi_{p^{a}}\right)^{t} \\
& =\binom{t}{p^{a}}\left(\xi_{p^{a}(b-1)}\right)^{p^{a}(b-1)} \otimes\left(\xi_{p^{a}}\right)^{p^{a}} \quad \text { with }\binom{t}{p^{a}} \equiv b \not \equiv 0 \bmod p .
\end{aligned}
$$

Since $\phi_{t} \iota_{t} f \simeq *$, we have a contradiction, which implies that X_{t} is not a $C_{p^{a}}(t)$ space. This completes the proof.

Proposition 5.5.

(1) If $1<t<p$, then X_{t} is a C_{t-1}-space, but not a C_{t}-space.
(2) If $t=1$ or $t \geq p$, then X_{t} is a C_{∞}-space.

Recall the following result proved by Williams [21]:
Theorem 5.6 ([21, Theorem 2]). Let $n \geq 1$. A topological monoid X is a C_{n}-space if and only if there is a map $\psi_{n}: J_{n}(\Sigma X) \rightarrow B X$ with $\left.\psi_{n}\right|_{\Sigma X}=$
$\varepsilon_{1}: \Sigma X \rightarrow B X$, where $J_{n}(Y)$ denotes the n-th James reduced product space of a space Y for $n \geq 1$.

Proof of Proposition 5.5. (1) By Propositions 4.5 and $5.3(2), X_{t}$ is a C_{t-1}-space.

If we assume that X_{t} is a C_{t}-space, then there is a map $\psi_{t}: J_{n}\left(\Sigma X_{t}\right) \rightarrow Z_{t}$ with $\left.\psi_{t}\right|_{\Sigma X_{t}}=\varepsilon_{1}$ by Theorem 5.6. Let $f:\left(\Sigma X_{t}\right)^{t} \rightarrow Z_{t}$ denote the composite of ψ_{t} with the projection $\left(\Sigma X_{t}\right)^{t} \rightarrow J_{t}\left(\Sigma X_{t}\right)$. Then we have

$$
\begin{aligned}
\left(\phi_{t} \iota_{t} f\right)^{\#}\left(\iota_{2 t}\right) & =\left(\xi_{1} \otimes 1 \otimes \cdots \otimes 1+\cdots+1 \otimes \cdots \otimes 1 \otimes \xi_{1}\right)^{t} \\
& =t!\xi_{1} \otimes \cdots \otimes \xi_{1} \quad \text { with } t!\not \equiv 0 \bmod p
\end{aligned}
$$

Since $\phi_{t} \iota_{t} f \simeq *$, we have a contradiction, and so X_{t} is not a C_{t}-space.
(2) By Propositions 4.5 and 5.3(1), X_{1} is a C_{∞}-space.

Since S^{1} is a C_{∞}-space, there is a map $\psi_{n}^{\prime}: J_{n}\left(S^{2}\right) \rightarrow \boldsymbol{C} P^{\infty}$ with $\left.\psi_{n}^{\prime}\right|_{S^{2}}=$ $\varepsilon_{1}^{\prime}: S^{2} \rightarrow \boldsymbol{C} P^{\infty}$ for any $n \geq 1$ by Theorem 5.6.

Now we prove that there is a family of maps $\left\{\psi_{n}: J_{n}\left(\Sigma X_{t}\right) \rightarrow Z_{t}\right\}_{n \geq 1}$ with the following relations:

$$
\begin{align*}
& \psi_{1}=\varepsilon_{1}: \Sigma X_{t} \rightarrow Z_{t} \\
& \left.\psi_{n}\right|_{J_{n-1}\left(\Sigma X_{t}\right)}=\psi_{n-1} \quad \text { for } n>1 \tag{5.7}\\
& \iota_{t} \psi_{n} \simeq \psi_{n}^{\prime} J_{n}\left(\Sigma \Omega \iota_{t}\right) \quad \text { for } n \geq 1
\end{align*}
$$

We work by induction on n. The result is clear for $n=1$. Assume that the result is proved for $n-1$. Put $K=\left(\Sigma X_{t}\right)^{n}$ and $L=\left(\Sigma X_{t}\right)^{[n]}$. Let $f: K \rightarrow \boldsymbol{C} P^{\infty}$ be the composite of $\psi_{n}^{\prime} J_{n}\left(\Sigma \Omega \iota_{t}\right)$ with the projection $K \rightarrow J_{n}\left(\Sigma X_{t}\right)$. Then by inductive hypothesis, there is a map $\psi_{n-1}: J_{n-1}\left(\Sigma X_{t}\right) \rightarrow Z_{t}$ with (5.7).

Consider the composite $g: L \rightarrow Z_{t}$ of ψ_{n-1} with the projection $L \rightarrow$ $J_{n-1}\left(\Sigma X_{t}\right)$. Then $\left.f\right|_{L} \simeq \iota_{t} g$. If $t \geq p$, then

$$
\begin{aligned}
\left(\phi_{t} f\right)^{\#}\left(\iota_{2 t}\right)=f^{\#}(u)^{t}= & \left(\xi_{1} \otimes 1 \otimes \cdots \otimes 1+\cdots+1 \otimes \cdots \otimes 1 \otimes \xi_{1}\right)^{t-p} \\
& \cdot\left(\left(\xi_{1}\right)^{p} \otimes 1 \otimes \cdots \otimes 1+\cdots+1 \otimes \cdots \otimes 1 \otimes\left(\xi_{1}\right)^{p}\right)=0,
\end{aligned}
$$

and so there is a map $\widetilde{\psi}_{n}: K \rightarrow Z_{t}$ with $\left.\widetilde{\psi}_{n}\right|_{L}=g$ and $\iota_{t} \widetilde{\psi}_{n} \simeq f$ by Lemma 5.4. Since $\left.\widetilde{\psi}_{n}\right|_{L}=g$, we have a map $\psi_{n}: J_{n}\left(\Sigma X_{t}\right) \rightarrow Z_{t}$ with (5.7), which implies that X_{t} is a C_{∞}-space by Theorem 5.6. This completes the proof.

Remark 5.7. Let W_{t} be the homotopy fiber of the map $\phi_{t}^{\prime}: C P^{\infty} \rightarrow$
$K(\boldsymbol{Q}, 2 t)$ corresponding to the class $v^{t} \in H^{2 t}\left(\boldsymbol{C} P^{\infty} ; \boldsymbol{Q}\right)$ for $t>1$, where $v \in H^{2}\left(\boldsymbol{C} P^{\infty} ; \boldsymbol{Q}\right)$ denotes the generator. Put $Y_{t}=\Omega W_{t}$ for $t>1$. Using the same way as the proofs of Propositions 5.3 and 5.5 , we can prove that Y_{t} is a $C_{k}(t-1)$-space for any $1 \leq k \leq t-1$, but not a C_{t}-space.

Now we proceed to the proof of Theorem B.
Proof of Theorem B. If $X_{(0)}$ is a $C_{k}(n)$-space, then $X_{(0)}$ is a C_{n}-space by Proposition 4.5.

Now we consider the converse. Let S be the set of all generators for $H^{*}\left(B X_{(0)} ; \boldsymbol{Q}\right)$ as a \boldsymbol{Q}-algebra. Consider the free \boldsymbol{Q}-algebra A^{*} generated by S with the projection $\omega: A^{*} \rightarrow H^{*}\left(B X_{(0)} ; \boldsymbol{Q}\right)$. Since $X_{(0)}$ is a C_{n}-space, there is a $\operatorname{map} \psi_{n}: J_{n}\left(\Sigma X_{(0)}\right) \rightarrow B X_{(0)}$ with $\left.\psi_{n}\right|_{\Sigma X_{(0)}}=\varepsilon_{1}$ by Theorem 5.6.

From the same reason as the proof of [11, Lemma 4.7], we have

$$
\begin{equation*}
\operatorname{ker} \psi_{n}^{\#} \omega \subset D^{n+1} A^{*} \tag{5.8}
\end{equation*}
$$

where $D^{n+1} A^{*}$ denotes the $(n+1)$-fold decomposable module of A^{*}. Since $\operatorname{ker} \omega \subset$ ker $\psi_{n}^{\#} \omega$, we have $\operatorname{ker} \omega \subset D^{n+1} A^{*}$ by (5.8). This implies that $B X_{(0)}$ is an $H(n)$ space by [7, Proposition 8]. Then by Theorem A, $X_{(0)}$ is a $C_{k}(n)$-space for any $1 \leq k \leq n$. This completes the proof of Theorem B.

6. Homotopy localizations.

Let A and B be spaces and $f \in \operatorname{Map}_{*}(A, B)$. According to Dror Farjoun $\left[\mathbf{6}\right.$, p.2, A.1], a space Z is called f-local if the induced map $f^{\#}: \operatorname{Map}_{*}(B, Z) \rightarrow$ $\operatorname{Map}_{*}(A, Z)$ is a homotopy equivalence. In particular, when $B=\{*\}$ and $f: A \rightarrow$ $\{*\}$ is the constant map, Z is called A-local, that is, $\operatorname{Map}_{*}(A, Z)$ is contractible.

Bousfield [2, Section 2] and Dror Farjoun [6, Section 1] constructed the A localization $L_{A}(X)$ with the universal map $\phi_{X}: X \rightarrow L_{A}(X)$ for a space X. By their results [6, p. 4, A.4] and [2, Theorem 2.10(ii)], $L_{A}(X)$ is A-local and ϕ_{X} induces a homotopy equivalence

$$
\begin{equation*}
\left(\phi_{X}\right)^{\#}: \operatorname{Map}_{*}\left(L_{A}(X), Z\right) \longrightarrow \operatorname{Map}_{*}(X, Z) \tag{6.1}
\end{equation*}
$$

for any A-local space Z (see also [5, Theorem 14.1]).
Definition 6.1. Let $n \geq 1$ and $1 \leq k \leq n$. Assume that X and Y are $C_{k}(n)$-spaces with the $C_{k}(n)$-structures $\left\{Q_{r, s}^{X}\right\}_{(r, s) \in \Lambda_{k}(n)}$ and $\left\{Q_{r, s}^{Y}\right\}_{(r, s) \in \Lambda_{k}(n)}$. A homomorphism $\phi: X \rightarrow Y$ is called a $C_{k}(n)$-map if there is a family of maps $\left\{D_{r, s}: I \times N_{r, s} \times X^{r+s} \rightarrow Y\right\}_{(r, s) \in \Lambda_{k}(n)}$ with the following relations:

$$
\begin{align*}
& D_{r, 0}\left(*, x_{1}, \ldots, x_{r}\right)=\phi\left(x_{1} \cdots x_{r}\right) \quad \text { and } \quad D_{0, s}\left(*, y_{1}, \ldots, y_{s}\right)=\phi\left(y_{1} \cdots y_{s}\right) . \tag{6.2}\\
& D_{r, s}\left(t, \varepsilon^{\left(p_{i}\right)}(a), x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \\
& \quad= \begin{cases}\phi\left(x_{1}\right) \cdot D_{r-1, s}\left(t, a, x_{2}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) & \text { if } i=0 \\
D_{r-1, s}\left(t, a, x_{1}, \ldots, x_{i} \cdot x_{i+1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) & \text { if } 0<i<r \\
D_{r-1, s}\left(t, a, x_{1}, \ldots, x_{r-1}, y_{1}, \ldots, y_{s}\right) \cdot \phi\left(x_{r}\right) & \text { if } i=r .\end{cases} \tag{6.3}\\
& D_{r, s}\left(t, \varepsilon^{\left(q_{j}\right)}(a), x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \\
& \quad= \begin{cases}\phi\left(y_{1}\right) \cdot D_{r, s-1}\left(t, a, x_{1}, \ldots, x_{r}, y_{2}, \ldots, y_{s}\right) & \text { if } j=0 \\
D_{r, s-1}\left(t, a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{j} \cdot y_{j+1}, \ldots, y_{s}\right) & \text { if } 0<j<s \\
D_{r, s-1}\left(t, a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s-1}\right) \cdot \phi\left(y_{s}\right) & \text { if } j=s .\end{cases} \tag{6.4}\\
& D_{r, s}\left(t, \varepsilon^{\left(h_{i, j}\right)}(a, b), x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \\
& \quad=D_{i, j}\left(t, a, x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{j}\right) \cdot D_{r-i, s-j}\left(t, b, x_{i+1}, \ldots, x_{r}, y_{j+1}, \ldots, y_{s}\right) \tag{6.5}
\end{align*}
$$

for $0<i<r$ and $0<j<s$.

$$
\begin{align*}
& D_{r, s}\left(t, a, x_{1}, \ldots, x_{i-1}, *, x_{i+1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \\
& \quad=D_{r-1, s}\left(t, \delta_{i}(a), x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) \quad \text { for } 1 \leq i \leq r \tag{6.6}\\
& D_{r, s}\left(t, a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{j-1}, *, y_{j+1}, \ldots, y_{s}\right) \\
& \quad=D_{r, s-1}\left(t, \delta_{j}^{\prime}(a), x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{s}\right) \quad \text { for } 1 \leq j \leq s \\
& D_{r, s}\left(0, a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)=\phi\left(Q_{r, s}^{X}\left(a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)\right) \tag{6.7}\\
& D_{r, s}\left(1, a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)=Q_{r, s}^{Y}\left(a, \phi\left(x_{1}\right), \ldots, \phi\left(x_{r}\right), \phi\left(y_{1}\right), \ldots, \phi\left(y_{s}\right)\right) \text {. } \tag{6.8}
\end{align*}
$$

Theorem 6.2. Let $n \geq 1$ and $1 \leq k \leq n$. If X is a $C_{k}(n)$-space, then the A localization $L_{A}(X)$ is a $C_{k}(n)$-space such that the universal map $\phi_{X}: X \rightarrow L_{A}(X)$ is a $C_{k}(n)$-map.

Using the same way as the proof of [15, Proposition 4.1], we have the following proposition:

Proposition 6.3. Let $n \geq 1$ and $1 \leq k \leq n$. Assume that X and Y are
topological monoids and $\phi: X \rightarrow Y$ is a homomorphism. If X is a $C_{k}(n)$-space and Y is ϕ-local, then Y is a $C_{k}(n)$-space such that ϕ is a $C_{k}(n)$-map.

We give an outline of the proof of Proposition 6.3.
Proof of Proposition 6.3. We work by induction on n. The result is clear for $n=1$. Assume that the result is proved for $n-1$.

Let $\left\{Q_{r, s}^{X}\right\}_{(r, s) \in \Lambda_{k}(n)}$ be a $C_{k}(n)$-structure on X, and put $k^{\prime}=\min \{k, n-1\}$. By inductive hypothesis, we have that Y is a $C_{k^{\prime}}(n-1)$-space and $\phi: X \rightarrow Y$ is a $C_{k^{\prime}}(n-1)$-map whose $C_{k^{\prime}}(n-1)$-structures are given by $\left\{Q_{r, s}^{Y}\right\}_{(r, s) \in \Lambda_{k^{\prime}}(n-1)}$ and $\left\{D_{r, s}\right\}_{(r, s) \in \Lambda_{k^{\prime}}(n-1)}$, respectively. Put

$$
U_{r, s}=\left(I \times \partial N_{r, s} \cup\{0\} \times N_{r, s}\right) \times X^{n} \cup I \times N_{r, s} \times X^{[n]}
$$

for $r, s \in \Lambda_{k}(n)$ with $r+s=n$, and let $E_{r, s}: U_{r, s} \rightarrow Y$ be defined by (6.2)-(6.7). From the homotopy extension property, there is a map $\widetilde{E}_{r, s}: I \times N_{r, s} \times X^{n} \rightarrow Y$ with $\left.\widetilde{E}_{r, s}\right|_{U_{r, s}}=E_{r, s}$.

Consider the maps $F_{r, s}: N_{r, s} \times X^{n} \rightarrow Y$ and $G_{r, s}: \partial N_{r, s} \times Y^{n} \rightarrow Y$ given by

$$
F_{r, s}\left(a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)=\widetilde{E}_{r, s}\left(1, a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)
$$

and (4.1)-(4.4), respectively. Let $\mu_{n}: Y^{n} \rightarrow Y$ be the n-fold multiplication of Y given by $\mu_{n}\left(y_{1}, \ldots, y_{n}\right)=y_{1} \cdots y_{n}$. We denote the adjoint of $F_{r, s}$ and $G_{r, s}$ by $\eta_{r, s}: N_{r, s} \rightarrow \operatorname{Map}_{*}\left(X^{n}, Y\right)_{\left(\phi^{n}\right) \#\left(\mu_{n}\right)}$ and $\lambda_{r, s}: \partial N_{r, s} \rightarrow \operatorname{Map}_{*}\left(Y^{n}, Y\right)_{\mu_{n}}$, respectively. Then $\left(\phi^{n}\right)^{\#}\left(\lambda_{r, s}\right)=\left.\eta_{r, s}\right|_{\partial N_{r, s}}$, which implies that there is a map $\tilde{\lambda}_{r, s}$: $N_{r, s} \rightarrow \operatorname{Map}_{*}\left(Y^{n}, Y\right)_{\mu_{n}}$ with $\left.\widetilde{\lambda}_{r, s}\right|_{\partial N_{r, s}}=\lambda_{r, s}$ and $\left(\phi^{n}\right) \#\left(\widetilde{\lambda}_{r, s}\right) \simeq \eta_{r, s}$ rel $\partial N_{r, s}$ by [15, Lemmas 4.2 and 4.3]. Consider the adjoint $\widetilde{G}_{r, s}: N_{r, s} \times Y^{n} \rightarrow Y$ of $\widetilde{\lambda}_{r, s}$. Using the same way as the proof of [15, Proposition 4.1], we modify $\widetilde{G}_{r, s}$ and $\widetilde{E}_{r, s}$ to have maps $Q_{r, s}^{Y}: N_{r, s} \times Y^{n} \rightarrow Y$ and $D_{r, s}: I \times N_{r, s} \times X^{n} \rightarrow Y$ with (4.1)-(4.5) and (6.2)-(6.8). Then $\left\{Q_{r, s}^{Y}\right\}_{(r, s) \in \Lambda_{k}(n)}$ and $\left\{D_{r, s}\right\}_{(r, s) \in \Lambda_{k}(n)}$ are $C_{k}(n)$-structures on Y and ϕ, respectively. This completes the proof.

Proof of Theorem 6.2. According to Dror Farjoun [6, p. 59, A.1], there is a homotopy equivalence $L_{A}(X) \simeq \Omega L_{\Sigma A}(B X)$ such that the universal map $\phi_{X}: X \rightarrow L_{A}(X)$ is identified with $\Omega\left(\phi_{B X}\right): X \rightarrow \Omega L_{\Sigma A}(B X)$. Then we may assume that $L_{A}(X)$ is a topological monoid and ϕ_{X} is a homomorphism. Since $L_{A}(X)$ is ϕ_{X}-local by (6.1), we have the required conclusion by Proposition 6.3. This completes the proof of Theorem 6.2.

Proposition 6.4. Let $n \geq 1$ and $1 \leq k \leq n$. Assume that X and B are
$C_{k}(n)$-spaces and $\phi: X \rightarrow B$ is a $C_{k}(n)$-map. Then the homotopy fiber $F(\phi)$ of ϕ is a $C_{k}(n)$-space such that the fiber inclusion $\iota: F(\phi) \rightarrow X$ is a $C_{k}(n)$-map.

Proof. Recall that

$$
F(\phi)=\{(x, \omega) \in X \times \operatorname{Map}(I, B) \mid \omega(0)=\phi(x) \text { and } \omega(1)=*\}
$$

and $\iota: F(\phi) \rightarrow X$ is given by $\iota(x, \omega)=x$ (cf. [10, p. 407]). Let $\mu: F^{2} \rightarrow F$ be the multiplication defined by $\mu\left(\left(x_{1}, \omega_{1}\right),\left(x_{2}, \omega_{2}\right)\right)=\left(x_{1} \cdot x_{2}, \omega_{1} * \omega_{2}\right)$, where $\omega_{1} * \omega_{2} \in \operatorname{Map}(I, B)$ is given by $\left(\omega_{1} * \omega_{2}\right)(t)=\omega_{1}(t) \cdot \omega_{2}(t)$ for $t \in I$. Then $F(\phi)$ is a topological monoid and $\iota: F(\phi) \rightarrow X$ is a homomorphism.

Let $\left\{Q_{r, s}^{X}\right\}_{(r, s) \in \Lambda_{k}(n)}$ and $\left\{Q_{r, s}^{B}\right\}_{(r, s) \in \Lambda_{k}(n)}$ denote the $C_{k}(n)$-structures on X and B, respectively. Since $\phi: X \rightarrow B$ is a $C_{k}(n)$-map, we have the $C_{k}(n)$-structure $\left\{D_{r, s}\right\}_{(r, s) \in \Lambda_{k}(n)}$. Define $Q_{r, s}^{F(\phi)}: N_{r, s} \times F(\phi)^{r+s} \rightarrow F(\phi)$ by

$$
\begin{align*}
& Q_{r, s}^{F(\phi)}\left(a,\left(x_{1}, \omega_{1}\right), \ldots,\left(x_{r}, \omega_{r}\right),\left(y_{1}, \omega_{1}^{\prime}\right), \ldots,\left(y_{s}, \omega_{s}^{\prime}\right)\right) \\
& \quad=\left(Q_{r, s}^{X}\left(a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right), \zeta_{r, s}\left(a, \omega_{1}, \ldots, \omega_{r}, \omega_{1}^{\prime}, \ldots, \omega_{s}^{\prime}\right)\right) \tag{6.9}
\end{align*}
$$

where

$$
\begin{aligned}
\zeta_{r, s}\left(a, \omega_{1}, \ldots, \omega_{r}, \omega_{1}^{\prime}, \ldots, \omega_{s}^{\prime}\right)(t) \\
\quad= \begin{cases}D_{r, s}\left(2 t, a, x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right) & \text { if } t \in[0,1 / 2], \\
Q_{r, s}^{B}\left(a, \omega_{1}(2 t-1), \ldots, \omega_{r}(2 t-1), \omega_{1}^{\prime}(2 t-1), \ldots, \omega_{s}^{\prime}(2 t-1)\right) & \text { if } t \in[1 / 2,1]\end{cases}
\end{aligned}
$$

for $(r, s) \in \Lambda_{k}(n)$. Then $\left\{Q_{r, s}^{F(\phi)}\right\}_{(r, s) \in \Lambda_{k}(n)}$ satisfies (4.1)-(4.5), and so $F(\phi)$ is a $C_{k}(n)$-space. Moreover, we see that $\iota: F(\phi) \rightarrow X$ is a $C_{k}(n)$-map by (6.9). This completes the proof.

According to Dror Farjoun [6, p.26, E.1], the localization $L_{S^{t+1}}(X)$ with respect to the $(t+1)$-sphere is the t-th stage $X[t]$ for the Postnikov system of X. Then by Theorem 6.2 and Proposition 6.4, we have the following corollary:

Corollary 6.5. Let X be a connected $C_{k}(n)$-space, where $n \geq 1$ and $1 \leq$ $k \leq n$.
(1) The t-th stage $X[t]$ for the Postnikov system of X is a $C_{k}(n)$-space and the projection $X \rightarrow X[t]$ is a $C_{k}(n)$-map.
(2) The t-connected covering $X\langle t\rangle$ of X is a $C_{k}(n)$-space and the fiber inclusion $X\langle t\rangle \rightarrow X$ is a $C_{k}(n)$-map.

Castellana-Crespo-Scherer [4, Theorem 7.3] proved that if X is a connected H-space whose cohomology $H^{*}\left(X ; \boldsymbol{F}_{p}\right)$ is finitely generated as an algebra over the Steenrod algebra \mathscr{A}_{p}^{*}, then the $B \boldsymbol{Z} / p$-localization $L_{B \boldsymbol{Z} / p}(X)$ is \boldsymbol{F}_{p}-finite and the homotopy fiber $F\left(\phi_{X}\right)$ of the universal map $\phi_{X}: X \rightarrow L_{B \boldsymbol{Z} / p}(X)$ is Postnikov. By their result, Theorem 6.2 and Proposition 6.4, if X is a connected $C_{k}(n)$ space with finitely generated cohomology over \mathscr{A}_{p}^{*}, then $L_{B \boldsymbol{Z} / p}(X)$ is an \boldsymbol{F}_{p}-finite $C_{k}(n)$-space and $F\left(\phi_{X}\right)$ is a Postnikov $C_{k}(n)$-space.

References

[1] J. Aguadé, Decomposable free loop spaces, Canad. J. Math., 39 (1987), 938-955.
[2] A. K. Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc., 7 (1994), 831-873.
[3] A. K. Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc., 353 (2001), 2391-2426.
[4] N. Castellana, J. A. Crespo and J. Scherer, Deconstructing Hopf spaces, Invent. Math., 167 (2007), 1-18.
[5] W. Chachólski, On the functors $C W_{A}$ and P_{A}, Duke Math. J., 84 (1996), 599-631.
[6] E. Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Math., 1622, Springer-Verlag, Berlin, 1996.
[7] Y. Félix and D. Tanré, H-space structure on pointed mapping spaces, Algebr. Geom. Topol., 5 (2005), 713-724 (electronic).
[8] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Newton polytopes of the classical resultant and discriminant, Adv. Math., 84 (1990), 237-254.
[9] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, resultants and multidimensional determinants, reprint of the 1994 edition, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008.
[10] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
[11] Y. Hemmi, Higher homotopy commutativity of H-spaces and the $\bmod p$ torus theorem, Pacific J. Math., 149 (1991), 95-111.
[12] Y. Hemmi and Y. Kawamoto, Higher homotopy commutativity of H-spaces and the permuto-associahedra, Trans. Amer. Math. Soc., 356 (2004), 3823-3839.
[13] R. M. Kane, The homology of Hopf spaces, North-Holland Math. Library, 40, NorthHolland Publishing Co., Amsterdam, 1988.
[14] M. M. Kapranov and V. A. Voevodsky, 2-categories and Zamolodchikov tetrahedra equations, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Amer. Math. Soc., Providence, RI, 1994, 177-259.
[15] Y. Kawamoto, Higher homotopy commutativity of H-spaces and homotopy localizations, Pacific J. Math., 231 (2007), 103-126.
[16] R. J. Milgram, Iterated loop spaces, Ann. of Math. (2), 84 (1966), 386-403.
$[17]$ J. D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc., 108 (1963), 275-292, 293-312.
[18] J. D. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Math., 161, Springer-Verlag, Berlin-New York, 1970.
[19] M. Sugawara, On the homotopy-commutativity of groups and loop spaces, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 33 (1960/1961), 257-269.
[20] H. Toda, Composition methods in homotopy groups of spheres, Ann. Math. Stud., 49, Princeton University Press, Princeton, N.J., 1962.
[21] F. D. Williams, A characterization of spaces with vanishing generalized higher Whitehead products, Bull. Amer. Math. Soc., 74 (1968), 497-499.
[22] F. D. Williams, Higher homotopy-commutativity, Trans. Amer. Math. Soc., 139 (1969), 191-206.
[23] F. D. Williams, Higher Samelson products, J. Pure Appl. Algebra, 2 (1972), 249-260.

Yutaka Hemmi
Department of Mathematics Kochi University
Kochi 780-8520, Japan
E-mail: hemmi@kochi-u.ac.jp
Yusuke Kawamoto
Department of Mathematics
National Defense Academy
Yokosuka 239-8686, Japan
E-mail: yusuke@nda.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 55P48, 52B11; Secondary 55P35, 55R35.
 Key Words and Phrases. higher homotopy commutativity, resultohedra, topological monoids, $C_{k}(n)$-spaces.

