Abstract
The aim of this paper is to prove the celebrated Riemann Hypothesis. I have already discovered a simple proof of the Riemann Hypothesis. The hypothesis states that the nontrivial zeros of the Riemann zeta function have real part equal to 0.5. I assume that any such zero is s=a+bi. I use integral calculus in the first part of the proof. In the second part I employ variational calculus. Through equations (50) to (59) I consider (a) as a fixed exponent, and verify that a=0.5. From equation (60) onward I view (a) as a parameter (a <0.5) and arrive at a contradiction. At the end of the proof (from equation (73)) and through the assumption that (a) is a parameter, I verify again that a=0.5.
Citation
Fayez Fok Al Adeh. "How to Prove the Riemann Hypothesis." J. Gen. Lie Theory Appl. 10 (1) 1 - 5, 2016. https://doi.org/10.4172/1736-4337.1000250
Information