VIEW ALL ABSTRACTS +
Articles
HA Nazarkandi
J. Gen. Lie Theory Appl. 10 (1), 1-4, (2016) DOI: 10.4172/10.4172/1736-4337.1000240
KEYWORDS: Lie group, Spectral manifold, submersion, Eigenvalue function, spectral function
Uladzimir Shtukar
J. Gen. Lie Theory Appl. 10 (1), 1-4, (2016) DOI: 10.4172/1736-4337.1000241
KEYWORDS: Vector space, subspaces, canonical bases
OO Oyadare
J. Gen. Lie Theory Appl. 10 (1), 1-4, (2016) DOI: 10.4172/1736-4337.1000242
KEYWORDS: reductive groups, ‎Hilbert spaces, orthogonal polynomials
Uladzimir Shtukar
J. Gen. Lie Theory Appl. 10 (1), 1-6, (2016) DOI: 10.4172/1736-4337.1000243
KEYWORDS: Vector space, subspaces, Lie algebras, Subalgebras
C Alexandre, M Bordemann, S Rivière, F Wagemann
J. Gen. Lie Theory Appl. 10 (1), 1-20, (2016) DOI: 10.4172/1736-4337.1000244
KEYWORDS: coalgebras, Cocommutative Hopf dialgebras, Canonical rack bialgebras, Manifolds, Drinfeld center
U Shtukar
J. Gen. Lie Theory Appl. 10 (1), 1-8, (2016) DOI: 10.4172/1736-4337.1000245
KEYWORDS: Vector space, subspaces, canonical bases
Kris A Nairn
J. Gen. Lie Theory Appl. 10 (1), 1-5, (2016) DOI: 10.4172/1736-4337.1000246
KEYWORDS: moduli space, Lie groups, representation theory, characteristic classes, centralizers
Juanjuan Li, Guangzhe Fan
J. Gen. Lie Theory Appl. 10 (1), 1-5, (2016) DOI: 10.4172/1736-4337.1000247
KEYWORDS: Not-finitely graded Lie superalgebras, Super-Virasoro algebras, Generalized super-Virasoro algebras, derivations, automorphisms, 2-Cocycles
MA Pereira
J. Gen. Lie Theory Appl. 10 (1), 1-26, (2016) DOI: 10.4172/1736-4337.1000248
KEYWORDS: Electromagnetism law, Hyperspherical topology, Hypergeometrical standard model, topology, Cosmogenesis, Electrostatics law, Magnetic interactions, quantum gravity
S Davis
J. Gen. Lie Theory Appl. 10 (1), 1-8, (2016) DOI: 10.4172/1736-4337.1000249
KEYWORDS: Fibre bundle, dimensional reduction, ‎centralizer‎, Super symmetry
Fayez Fok Al Adeh
J. Gen. Lie Theory Appl. 10 (1), 1-5, (2016) DOI: 10.4172/1736-4337.1000250
KEYWORDS: Definite integral, Indefinite integral, variational calculus
Back to Top