Translator Disclaimer
Winter 2012 Test exponents for modules with finite phantom projective dimension
Melvin Hochster, Yongwei Yao
Illinois J. Math. 56(4): 1095-1107 (Winter 2012). DOI: 10.1215/ijm/1399395824

Abstract

Let $(R,\mathfrak{m})$ be an equidimensional excellent local ring of prime characteristic $p>0$. We give an alternate proof of the existence of a uniform test exponent for any given $c\in R^{\circ}$ and all ideals generated by (full or partial) systems of parameters. This follows from a more general result about the existence of a test exponent for any given Artinian $R$-module. If we further assume $R$ is Cohen–Macaulay, then there exists a test exponent for any given $c\in R^{\circ}$ and all perfect modules with finite projective dimension.

Citation

Download Citation

Melvin Hochster. Yongwei Yao. "Test exponents for modules with finite phantom projective dimension." Illinois J. Math. 56 (4) 1095 - 1107, Winter 2012. https://doi.org/10.1215/ijm/1399395824

Information

Published: Winter 2012
First available in Project Euclid: 6 May 2014

zbMATH: 1299.13008
MathSciNet: MR3231475
Digital Object Identifier: 10.1215/ijm/1399395824

Subjects:
Primary: 13A35
Secondary: 13C13, 13H10

Rights: Copyright © 2012 University of Illinois at Urbana-Champaign

JOURNAL ARTICLE
13 PAGES


SHARE
Vol.56 • No. 4 • Winter 2012
Back to Top