Open Access
Fall 2008 Sharp LlogL inequalities for differentially subordinated martingales and harmonic functions
Adam Oşekowski
Illinois J. Math. 52(3): 745-756 (Fall 2008). DOI: 10.1215/ijm/1254403712

Abstract

Let $(x_n)$, $(y_n)$ be two martingales adapted to the same filtration $(\mathcal{F}_n)$ satisfying, with probability $1$, \[ |dx_n|\leq|dy_n|,\quad n=0, 1, 2, \ldots . \] For every $K>0,$ we determine the best constant $L=L(K)$ for which the inequality \[ \mathbb{E} |x_n| \leq K\mathbb{E} |y_n|\log|y_n|+L,\quad n=0, 1, 2, \ldots \] holds true. We also prove a similar inequality for harmonic functions.

Citation

Download Citation

Adam Oşekowski. "Sharp LlogL inequalities for differentially subordinated martingales and harmonic functions." Illinois J. Math. 52 (3) 745 - 756, Fall 2008. https://doi.org/10.1215/ijm/1254403712

Information

Published: Fall 2008
First available in Project Euclid: 1 October 2009

MathSciNet: MR2546005
Digital Object Identifier: 10.1215/ijm/1254403712

Subjects:
Primary: 31B05 , 60G42

Rights: Copyright © 2008 University of Illinois at Urbana-Champaign

Vol.52 • No. 3 • Fall 2008
Back to Top