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SHARP LLOGL INEQUALITIES FOR DIFFERENTIALLY
SUBORDINATED MARTINGALES AND HARMONIC

FUNCTIONS

ADAM OSȨKOWSKI

Abstract. Let (xn), (yn) be two martingales adapted to the
same filtration (Fn) satisfying, with probability 1,

|dxn | ≤ |dyn |, n = 0,1,2, . . . .

For every K > 0, we determine the best constant L = L(K) for
which the inequality

E|xn | ≤ KE|yn| log |yn | + L, n = 0,1,2, . . .

holds true. We also prove a similar inequality for harmonic func-
tions.

1. Introduction

Let (Ω, F ,P) be a probability space equipped with a discrete filtration
(Fn)n≥0. Throughout the paper, (xn)n≥0, (yn)n≥0 will denote (Fn)-martin-
gales taking values in a certain separable Hilbert space H. The norm in this
Hilbert space will be denoted by | · | and x · y will stand for the scalar product
of the vectors x, y ∈ H. The difference sequences of the martingales (xn),
(yn) will be denoted by (dxn)n≥0, (dyn)n≥0, respectively; that is, we set

dx0 = x0, dxn = xn − xn−1,

dy0 = y0, dyn = yn − yn−1, n = 1,2, . . . .

Given a sequence (vn) of (Fn)-predictable random variables, (xn) is said to
be a transform of the martingale (yn) by the sequence (vn), if for any n we
have dxn = vndyn. In particular, if for any n, vn is constant almost surely
and equal to ±1, we will say that (xn) is a ±1 transform of (yn).

Received May 3, 2007; received in final form September 11, 2007.
Partially supported by MEiN Grant 1 PO3A 012 29.

2000 Mathematics Subject Classification. 60G42, 31B05.

745

c©2009 University of Illinois

http://www.ams.org/msc/


746 A. OSȨKOWSKI

In [2], Burkholder introduced a notion of differential subordination (though
it appears in earlier papers of Burkholder, see for example [1]). A martingale
(xn) is said to be differentially subordinate to a martingale (yn), if for any
n = 0,1,2, . . . , with probability 1, we have

(1.1) |dxn| ≤ |dyn|.
This generalizes the notion of martingale transforms; if (xn) is the transform
of (yn) by a sequence (vn) which is bounded by 1, then (xn) is differentially
subordinate to (yn).

The famous results of Burkholder establish sharp weak and strong type
inequalities for differentially subordinated martingales.

Theorem 1.1. Let (xn), (yn) be two (Fn)-martingales such that (xn) is
differentially subordinate to (yn) and n be a fixed nonnegative integer.
(i) (The weak type (1,1) inequality.) For any positive λ,

(1.2) λP(|xn| ≥ λ) ≤ 2E|yn|.
(ii) (The strong type (p, p) inequality.) For 1 < p < ∞,

(1.3) (E|xn|p)1/p ≤ (p∗ − 1)(E|yn|p)1/p,

where p∗ = max{p, p/(p − 1)}.
Both constants 2 and p∗ − 1 are best possible.

Since the paper [2], many interesting sharp inequalities for differentially
subordinated martingales were established. These include the further results
of Burkholder [3], [4], and Suh [6]. Moreover, the differential subordination
(1.1) was successfully transferred to the case of continuous-time martingales
by Wang [7] and similar sharp inequalities were proved in this setting.

In the paper, we study LlogL inequalities for the differential subordinated
martingales. It is well known, that strong type (1,1) inequalities fail to hold
and only the weak-type estimates are true. However, the first moment of (xn)
can be bounded in terms of (yn) as follows: since the strong (p, p) estimates
hold true for 1 < p < ∞, classical extrapolation arguments yield the existence
of an absolute constants K,L such that

(1.4) E|xn| ≤ KE|yn| log |yn| + L, n = 0,1,2, . . . .

This inequality is of our main interest. The contribution of this paper is to
determine, for any K > 0, the optimal value of the constant L. Precisely, our
main results are contained in the following theorem.

Theorem 1.2. Let (xn), (yn) be two (Fn)-martingales taking values in H
such that (xn) is differentially subordinate to (yn). Fix a nonnegative integer
n and a positive number K. Then

(i) If K ≤ 1, then the inequality (1.4) does not hold in general for any
L > 0 as it does not even for ±1 transforms.
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(ii) If 1 < K < 2, then the inequality (1.4) holds with

(1.5) L = L(K) =
K2

2(K − 1)
exp(−K−1).

The constant L is best possible, it is already best possible for H = R and x being
a ±1 transform of y. Furthermore, the inequality is strict in all nontrivial
cases.

(iii) If K ≥ 2, then the inequality (1.4) holds with

(1.6) L = L(K) = K exp(K−1 − 1).

The constant is best possible, it is already best possible for H = R and x being
a ±1 transform of y. Furthermore, in general, the inequality is not strict.

The optimality of the constants L is understood in the sense that for any
L′ < L there exists a pair (xn), (yn) of differentially subordinated martingales,
for which (1.4) is not true with L replaced by L′.

Note that quite unexpectedly, the inequality (1.4) behaves quite differently
for K < 2 and K ≥ 2. We have different expressions for the constant L, and
which is more important, for K < 2 the inequality is strict, while for K ≥ 2,
we may have equality in (1.4) for some nontrivial martingales.

Our second result concerns the LlogL inequality for harmonic functions.
Let Ω be an open subset of R

n, n being a positive integer. Let D be a
subdomain of Ω with 0 ∈ D and ∂D ⊂ Ω. Denote by μ the harmonic measure
on ∂D with respect to 0. Consider two harmonic functions v, w on Ω, taking
values in a Hilbert space H. Following [3], we say that v is differentially
subordinate to w if

| ∇v(x)| ≤ | ∇w(x)| for x ∈ Ω.

Burkholder proved the following result.

Theorem 1.3. Suppose v is differentially subordinate to w and v(0) ≤
w(0).
(i) (The weak type (1,1) inequality.) For any positive λ,

(1.7) λμ
(

{x ∈ ∂D : |v(x)| ≥ λ}
)

≤ 2
∫

∂D

|w(x)| dμ(x).

(ii) (The strong type (p, p) inequality.) For 1 < p < ∞,

(1.8)
[∫

∂D

|v(x)|p dμ(x)
]1/p

≤ (p∗ − 1)
[∫

∂D

|w(x)|p dμ(x)
]1/p

.

Our result can be stated as follows.

Theorem 1.4. Suppose v is differentially subordinate to w and K > 1.
Then

(1.9)
∫

∂D

|v(x)| dμ(x) ≤ K

∫
∂D

|w(x)| log |w(x)| dμ(x) + L,
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where L = L(K) is defined by (1.5) if 1 < K < 2 and (1.6) in the case K ≥ 2.
The constant L(K) is best possible for K ≥ 2.

We do not know the best constant L for 1 < K < 2. We also do not know
if (1.9) fails to hold for K ≤ 1.

The paper is organized as follows. In the next section, we describe the
method of proving certain martingale inequalities as well as inequalities for
harmonic functions, invented by Burkholder. Section 3 contains the proofs
of the inequalities (1.4) and (1.9). The sharpness of these estimates is in-
vestigated in Section 4. In the last section, we show that (1.4) is strict for
1 < K < 2, and that it fails to hold for K ≤ 1.

2. Burkholder’s method

Let us briefly describe the method Burkholder invented for proving in-
equalities for differentially subordinated martingales/differentially subordi-
nated harmonic functions. Let us first deal with the martingale setting. Given
a Borel function r : H × H → R, suppose we want to show that

(2.1) Er(xn, yn) ≥ 0, n = 0,1,2, . . . ,

for any martingales (xn), (yn) with (xn) differentially subordinate to (yn).
The main idea is to construct a special function b, which satisfies the following
properties.
1◦ For x, y ∈ H with |x| ≤ |y|, we have b(x, y) ≥ 0.
2◦ For any x, y ∈ H, b(x, y) ≤ r(x, y).
3◦ For any x, y ∈ H there exist A = A(x, y), B = B(x, y) ∈ H such that for

any h,k ∈ H with |h| ≤ |k|,

b(x + h, y + k) ≥ b(x, y) + A(x, y) · h + B(x, y) · k

(if b is differentiable in (x, y) then one is forced to take A(x, y) = ∂b
∂x (x, y),

B(x, y) = ∂b
∂y (x, y)).

These conditions immediately yield (2.1): note that by 3◦, we have, for any
n ≥ 0,

Eb(xn, yn) ≤ Eb(xn+1, yn+1).

Combining this inequality with 1◦ and 2◦, we may write

(2.2) Er(xn, yn) ≥ Eb(xn, yn) ≥ Eb(xn−1, yn−1) ≥ · · · ≥ Eb(x0, y0) ≥ 0,

thus completing the proof.
The inequalities for harmonic functions can be proved in a similar manner.

Assume we want to establish an inequality∫
∂D

r(v(x),w(x))dμ(x) ≥ 0
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for differentially subordinated harmonic functions v, w. Again, the key tool is
the special function b, satisfying 1◦, 2◦, and the following harmonic analogue
of the condition 3◦.

3◦ ′ If v is differentially subordinate to w, then b(v,w) is superharmonic on Ω.

Therefore, as in (2.2), using 1◦, 2◦, and 3◦ ′,

(2.3)
∫

∂D

r(v(x),w(x))dμ(x) ≥
∫

∂D

b(v(x),w(x))dμ(x) ≥ b(v(0),w(0)) ≥ 0.

For example, let us consider the weak type estimates (1.2) and (1.7). Clearly,
by homogeneity, it suffices to prove them for λ = 1; then we have r(x, y) =
2|y| − χ{ |x|≥1}. Following Burkholder [3], consider b : H × H → R defined by

(2.4) b(x, y) =

{
|y|2 − |x|2 if |x| + |y| ≤ 1,

2|y| − 1 if |x| + |y| > 1.

Then b satisfies 1◦, 2◦, 3◦, and 3◦ ′, which yields (1.2) and (1.7).
In the proofs of Theorems 1.2 and 1.4, we follow the same pattern and

construct the special function u with respect to r(x, y) = K|y| log |y| − |x| +L.

3. Proofs of (1.4) and (1.9)

We start from defining the special function u : H × H → R. Our approach is
based on the integration method, introduced by the author in [5]. The special
function is obtained by integration of scaled function b from the preceding
section against a positive kernel. Then most of its properties follow by the
ones of the function b. Precisely, let

u(x, y) =
∫ ∞

1

b(x/t, y/t)dt(3.1)

=

{
|y|2 − |x|2 if |x| + |y| ≤ 1,

2|y| log(|x| + |y|) − 2|x| + 1 if |x| + |y| > 1.

We start from some technical result to be needed later.

Lemma 3.1. Fix y ∈ H. For 1 < K ≤ 2, let

ψK(s) = 2|y| log(s + |y|) +
(

2
K

− 2
)

s, s ≥ (1 − |y|)+.

Then ψK attains its maximum only in one point |y|
K−1 ∨ (1 − |y|).

Proof. Straightforward analysis of the derivative. �

The two lemmas below present the most important properties of the func-
tion u.
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Lemma 3.2. (i) If (xn) is a martingale which is differentially subordinate
to a martingale (yn), then for any nonnegative integer n,

(3.2) Eu(xn, yn) ≥ 0.

(ii) If v, w : Ω → H are harmonic functions and v is differentially subor-
dinate to w, then ∫

∂D

u(v(x),w(x))dμ(x) ≥ 0.

Proof. (i) For any positive t, (xn/t) is differentially subordinated to (yn/t).
Therefore, by (2.2), for any nonnegative integer n we have

Eb(xn/t, yn/t) ≥ 0

and Fubini’s theorem yields the claim.
(ii) We use the same scaling argument and (2.3). �

Lemma 3.3. Fix x, y ∈ H. For K > 1, recall L = L(K) given by (1.5) and
(1.6).

(i) If 1 < K < 2, then

(3.3) u(x, y) ≤ 2|y| log
2L|y|

K
− 2

K
|x| + 1.

Furthermore, if |x|2 + |y|2 > 0,

(3.4) we have equality in (3.3) iff |x| + |y| ≥ 1 and |x| =
1

K − 1
|y|.

(ii) If K ≥ 2, then

(3.5) u(x, y) ≤ K|y| log
2L|y|

K
− |x| +

K

2
.

Proof. (i) If |x| + |y| ≤ 1, then the inequality (3.3) is equivalent to

|y|2 − 2|y| log
2L|y|

K
− 1 +

1
K2

≤ |x|2 − 2
K

|x| +
1

K2
=

(
|x| − 1

K

)2

.

Obviously, the right-hand side is nonnegative. The left-hand side, as a func-
tion of |y| ∈ [0,1], is strictly concave and vanishes along with its derivative at

|y| = 1 − K−1. Hence, we are done. Note that (3.4) holds true in this case.
If |x| + |y| > 1, then (3.3) takes form

(3.6) 2|y| log(|x| + |y|) +
(

2
K

− 2
)

|x| ≤ 2|y| log
2L|y|

K
.

By Lemma 3.1, if |y|/(K − 1) ≥ 1 − |y| (equivalently, |y|
K−1 + |y| ≥ 1), then the

left-hand side does not exceed

ψK

(
|y|

K − 1

)
= 2|y| log

K|y|
K − 1

− 2
K

|y| = 2|y| log
2L|y|

K
,
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with equality only if |x| = |y|/(K − 1). This shows (3.3) and (3.4). Finally, if
|y|/(K − 1) < 1 − |y|, then Lemma 3.1 reduces (3.6) to the case |x| + |y| = 1,
which we have already considered.

(ii) This is proved exactly in the same manner: for |x| + |y| ≤ 1, one rewrites
(3.5) in the form

|y|2 − K|y| log
2L|y|

K
+

1
4

− K

2
≤ |x|2 − |x| +

1
4

=
(

|x| − 1
2

)2

.

It is clear that right-hand side is nonnegative, while the left-hand side, con-
sidered as a function of |y|, is concave on [0,1] and vanishes along with its
derivative for |y| = 1

2 .
If |x| + |y| > 1, then (3.5) is equivalent to

(3.7) 2|y| log(|x| + |y|) − |x| + 1 ≤ K|y| log
2L|y|

K
+

K

2
.

Lemma 3.1 reduces the case |y| < 1
2 (or |y| < 1 − |y|) to the case |x| + |y| = 1,

which we have just considered. If |y| ≥ 1
2 , then, by Lemma 3.1, the left-hand

side of (3.7) does not exceed ψ2(|y|) + 1 and we are left to show that

ψ2(|y|) + 1 = 2|y| log 2|y| − |y| + 1 ≤ K|y| log
2L|y|

K
+

K

2
,

or, equivalently, (K − 2)[2|y| log(2|y|) − 2|y| + 1] ≥ 0. However, K ≥ 2 and the
expression in the square bracket is nonnegative. The proof is complete. �

Now, we are ready for the following proof.

Proof of the inequality (1.4). Fix a nonnegative integer n and let (xn),
(yn) be two martingales, with (xn) being differentially subordinate to (yn).
Then (x′

n) = (xn · K/2L) is differentially subordinated to (y′
n) = (yn · K/2L).

Therefore, we may apply Lemmas 3.2 and 3.3 to these new martingales; for
1 < K < 2, we obtain

KE|yn| log |yn| − E|xn| + L = L

[
2E|y′

n| log
2L|y′

n|
K

− 2
K

E|x′
n| + 1

]
(3.8)

≥ LEu(x′
n, y′

n) ≥ 0,

while for K ≥ 2,

KE|yn| log |yn| − E|xn| + L =
2L

K

[
KE|y′

n| log
2L|y′

n|
K

− E|x′
n| +

K

2

]

≥ 2L

K
Eu(x′

n, y′
n) ≥ 0. �

Proof of the inequality (1.9). We repeat all the arguments from the proof
above, replacing the martingales xn, yn by the functions v, w, and expecta-
tions by the integrals over ∂D. �
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4. Optimality of L = L(K)

Throughout this section, we assume H = R.
Let us start with two simple properties of the function u. The conditional

versions of the identities below will be needed later.

Lemma 4.1. Let d be a centered random variable and x, y be two positive
numbers.

(i) If −x ≤ d ≤ y almost surely, then

(4.1) Eu(x + d, y + d) = u(x, y).

(ii) If y ≥ 1 and d ≥ −y almost surely, then

(4.2) Eu(d, y + d) = u(0, y) + Eχ{d≥0}

(
2(y + d) log

y + 2d

y
− 4d

)
.

Proof. (i) From (3.1), we infer that the function φx,y : [−x, y] → R given
by φx,y(r) = u(x + r, y − r) is linear. This yields (4.1).

(ii) We have

E
(
u(d, y + d) − u(0, y)

)
= E[u(d, y + d) − u(0, y) − 2d(log y + 1)]
= Eχ{d≥0}[u(d, y + d) − u(0, y) − 2d(log y + 1)]

= Eχ{d≥0}

[
2(y + d) log

y + 2d

y
− 4d

]
. �

Now, we will construct a crucial pair of martingales. Let the underlying
probability space be the interval [0,1] with the Lebesgue measure. Fix num-
bers β > 0 and γ > 1. Let, for k = 1,2, . . . ,

Tk = (1 + β)k−1 ≥ 1,

mk =
γ − 1
2γ

· (1 + β)1−k

(
1 − 2β

2γ + β(γ + 1)

)k−1

.

Now, define (for simplicity, we identify a set with its indicator function)

x0 = y0 ≡ 1
2
,

dx1 = −dy1 = − 1
2

·
[
0,

γ − 1
2γ

]
+

1
2

· γ − 1
γ + 1

·
[
γ − 1
2γ

,1
]
.

Furthermore, for k = 1,2, . . . ,

dx2k = dy2k =
βTk

2
·
[
0,

2γmk

2γ + β(γ + 1)

]
− γTk

γ + 1
·
(

2γmk

2γ + β(γ + 1)
,mk

]
,

dx2k+1 = −dy2k+1

= − βTk

2
· [0,mk+1] +

Tk(2γ + β(γ − 1))
2(γ + 1)

·
(

mk+1,
2γmk

2γ + β(γ + 1)

]
.
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Note that (xn) is a ±1 transform of (yn). Some of the properties of these
martingales are described in the following lemma.

Lemma 4.2. For k = 1,2, . . . , we have

|xk−1| + |yk−1| ≥ 1 on [0,1],(4.3)

(x2k, y2k) =
(

βTk

2
, Tk +

βTk

2

)
on

[
0,

2γmk

2γ + β(γ + 1)

]
,(4.4)

(x2k−1, y2k−1) = (0, Tk) on [0,mk],(4.5)
|x2k−1| = γ|y2k−1| on (mk,1].(4.6)

Proof. Straightforward induction. �

Lemma 4.3. For k = 1,2, . . . we have

(4.7) Eu(x2k+1, y2k+1) = Eu(x2k, y2k)

and

Eu(x2k, y2k) = Eu(x2k−1, y2k−1)(4.8)

+
2γmkTk

2γ + β(γ + 1)
[(2 + β) log(1 + β) − 2β].

Proof. The property (4.4), combined with the inequality

− βTk

2
≤ dx2k+1 ≤ Tk +

βTk

2
on

[
0,

2γmk

2γ + β(γ + 1)

]

and Lemma 4.1(i), gives (4.7). Similarly, the property (4.5), together with
dx2k ≥ −Tk on [0,mk], in view of Lemma 4.1(ii), yield

Eu(x2k, y2k) − Eu(x2k−1, y2k−1)

= P(dx2k ≥ 0) ·
[
2
(

Tn +
βTn

2

)
log

Tn + βTn

Tn
− 2βTn

]

=
2γmkTk

2γ + β(γ + 1)
[(2 + β) log(1 + β) − 2β],

which is (4.8). �

Proof of the sharpness of (1.4) with L = L(K) and (1.9) for K ≥ 2. We
consider the cases K ≥ 2 and 1 < K < 2 separately.

The case K ≥ 2. We simply set xn = yn ≡ exp(K−1 − 1) almost surely,
n = 0,1,2, . . . and obtain equality in (1.4). Exactly in the same manner, the
choice v = w ≡ exp(K−1 − 1) on Ω gives equality in (1.9).

The case 1 < K < 2. This is more involved. For γ = 1/(K − 1) > 1, let
(xn), (yn) be the martingales constructed above and set x′

n = xn · 2L/K,
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y′
n = yn · 2L/K. For positive integer k, let

z2k−1 =
1
L

[K|y′
2k−1| log |y′

2k−1| − |x′
2k−1| + L]

= 2y2k−1 log
(

2L

K
y2k−1

)
− 2

K
|x2k−1| + 1.

Combining (3.4), (4.3), and (4.6), we may write

Ez2k−1 = Ez2k−1χ[0,mk] + Ez2k−1χ(mk,1](4.9)

= Ez2k−1χ[0,mk] +
K

2
Eu(x2k−1, y2k−1)χ(mk,1]

= Ez2k−1χ[0,mk] − K

2
Eu(x2k−1, y2k−1)χ[0,mk]

+
K

2
Eu(x2k−1, y2k−1).

Now, fix ε > 0. By (4.7) and (4.8),
K

2
Eu(x2k−1, y2k−1) =

K

2
[Eu(x2k−1, y2k−1) − Eu(x0, y0)]

=
K

2

2k−2∑
n=0

[Eu(xn+1, yn+1) − Eu(xn, yn)]

=
K

2

k−1∑
n=1

[Eu(x2n, y2n) − Eu(x2n−1, y2n−1)]

=
K

2

k−1∑
n=1

2γmnTn

2γ + β(γ + 1)
[(2 + β) log(1 + β) − 2β]

≤ Kγ((2 + β) log(1 + β) − 2β)
2γ + β(γ + 1)

∞∑
n=1

mnTn

=
Kγ((2 + β) log(1 + β) − 2β)

2γ + β(γ + 1)
· γ − 1

2γ
· 2γ + β(γ + 1)

2β
< ε

for β sufficiently close to 0. Now, in virtue of (4.5), we have

Ez2k−1χ[0,mk] = mk

(
2Tk log

2LTk

K
+ 1

)
< ε

for k large enough. Finally, by (4.5),
K

2
Eu(x2k−1, y2k−1)χ[0,mk] =

K

2
mk(2Tk logTk + 1) < ε

for k large enough. Therefore, by (4.9), we have shown that by a proper
choice of β and k, Ez2k−1 can be arbitrarily close to 0, which clearly implies
the optimality of L = L(K). �
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5. Strictness and the case K ≤ 1

Proof of the strictness of (1.4) for 1 < K < 2. Assume (xn) is differential-
ly subordinate to (yn). Fix an integer n and suppose P(|xn|2 + |yn|2 > 0) > 0.
Consider the martingales (x′

n) = (xn · K/2L), (y′
n) = (yn · K/2L) as in the

proof of (1.4). By (1.3), we have

E|x′
n|2 ≤ E|y′

n|2,

which implies P(|x′
n|2 + |y′

n|2 > 0, |x′
n| ≤ |y′

n|) > 0. Therefore, by (3.4), the
first inequality in (3.8) is strict, and hence so is the inequality (1.4). �

The inequality (1.4) fails to hold for K ≤ 1. Suppose (1.4) holds for some
K ≤ 1 and L < ∞. Fix K ′ ∈ (1,2), let (yn) be any martingale and (xn) be its

±1 transform. Since t log t ≥ −e−1 for nonnegative t, we may write

E|xn| ≤ KE|yn| log |yn| + L

= KE(|yn| log |yn| + e−1) + L − Ke−1

≤ K ′
E(|yn| log |yn| + e−1) + L − Ke−1

= K ′
E|yn| log |yn| + L + (K ′ − K)e−1,

which, by Theorem 1.2(ii), implies L(K ′) ≤ L + (K ′ − K)e−1 and contradicts
(1.5) if K ′ is taken sufficiently close to 1. �
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