# SHARP LLOGL INEQUALITIES FOR DIFFERENTIALLY SUBORDINATED MARTINGALES AND HARMONIC FUNCTIONS 

ADAM OSȨKOWSKI


#### Abstract

Let $\left(x_{n}\right),\left(y_{n}\right)$ be two martingales adapted to the same filtration $\left(\mathcal{F}_{n}\right)$ satisfying, with probability 1 ,


$$
\left|d x_{n}\right| \leq\left|d y_{n}\right|, \quad n=0,1,2, \ldots .
$$

For every $K>0$, we determine the best constant $L=L(K)$ for which the inequality

$$
\mathbb{E}\left|x_{n}\right| \leq K \mathbb{E}\left|y_{n}\right| \log \left|y_{n}\right|+L, \quad n=0,1,2, \ldots
$$

holds true. We also prove a similar inequality for harmonic functions.

## 1. Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space equipped with a discrete filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$. Throughout the paper, $\left(x_{n}\right)_{n \geq 0},\left(y_{n}\right)_{n \geq 0}$ will denote $\left(\mathcal{F}_{n}\right)$-martingales taking values in a certain separable Hilbert space $\mathcal{H}$. The norm in this Hilbert space will be denoted by $|\cdot|$ and $x \cdot y$ will stand for the scalar product of the vectors $x, y \in \mathcal{H}$. The difference sequences of the martingales $\left(x_{n}\right)$, $\left(y_{n}\right)$ will be denoted by $\left(d x_{n}\right)_{n \geq 0},\left(d y_{n}\right)_{n \geq 0}$, respectively; that is, we set

$$
\begin{array}{ll}
d x_{0}=x_{0}, & d x_{n}=x_{n}-x_{n-1}, \\
d y_{0}=y_{0}, & d y_{n}=y_{n}-y_{n-1}, \quad n=1,2, \ldots .
\end{array}
$$

Given a sequence $\left(v_{n}\right)$ of $\left(\mathcal{F}_{n}\right)$-predictable random variables, $\left(x_{n}\right)$ is said to be a transform of the martingale $\left(y_{n}\right)$ by the sequence $\left(v_{n}\right)$, if for any $n$ we have $d x_{n}=v_{n} d y_{n}$. In particular, if for any $n, v_{n}$ is constant almost surely and equal to $\pm 1$, we will say that $\left(x_{n}\right)$ is a $\pm 1$ transform of $\left(y_{n}\right)$.

In [2], Burkholder introduced a notion of differential subordination (though it appears in earlier papers of Burkholder, see for example [1]). A martingale $\left(x_{n}\right)$ is said to be differentially subordinate to a martingale $\left(y_{n}\right)$, if for any $n=0,1,2, \ldots$, with probability 1 , we have

$$
\begin{equation*}
\left|d x_{n}\right| \leq\left|d y_{n}\right| . \tag{1.1}
\end{equation*}
$$

This generalizes the notion of martingale transforms; if $\left(x_{n}\right)$ is the transform of $\left(y_{n}\right)$ by a sequence $\left(v_{n}\right)$ which is bounded by 1 , then $\left(x_{n}\right)$ is differentially subordinate to $\left(y_{n}\right)$.

The famous results of Burkholder establish sharp weak and strong type inequalities for differentially subordinated martingales.

THEOREM 1.1. Let $\left(x_{n}\right),\left(y_{n}\right)$ be two $\left(\mathcal{F}_{n}\right)$-martingales such that $\left(x_{n}\right)$ is differentially subordinate to $\left(y_{n}\right)$ and $n$ be a fixed nonnegative integer.
(i) (The weak type $(1,1)$ inequality.) For any positive $\lambda$,

$$
\begin{equation*}
\lambda \mathbb{P}\left(\left|x_{n}\right| \geq \lambda\right) \leq 2 \mathbb{E}\left|y_{n}\right| \tag{1.2}
\end{equation*}
$$

(ii) (The strong type $(p, p)$ inequality.) For $1<p<\infty$,

$$
\begin{equation*}
\left(\mathbb{E}\left|x_{n}\right|^{p}\right)^{1 / p} \leq\left(p^{*}-1\right)\left(\mathbb{E}\left|y_{n}\right|^{p}\right)^{1 / p} \tag{1.3}
\end{equation*}
$$

where $p^{*}=\max \{p, p /(p-1)\}$.
Both constants 2 and $p^{*}-1$ are best possible.
Since the paper [2], many interesting sharp inequalities for differentially subordinated martingales were established. These include the further results of Burkholder [3], [4], and Suh [6]. Moreover, the differential subordination (1.1) was successfully transferred to the case of continuous-time martingales by Wang [7] and similar sharp inequalities were proved in this setting.

In the paper, we study LlogL inequalities for the differential subordinated martingales. It is well known, that strong type $(1,1)$ inequalities fail to hold and only the weak-type estimates are true. However, the first moment of $\left(x_{n}\right)$ can be bounded in terms of $\left(y_{n}\right)$ as follows: since the strong $(p, p)$ estimates hold true for $1<p<\infty$, classical extrapolation arguments yield the existence of an absolute constants $K, L$ such that

$$
\begin{equation*}
\mathbb{E}\left|x_{n}\right| \leq K \mathbb{E}\left|y_{n}\right| \log \left|y_{n}\right|+L, \quad n=0,1,2, \ldots \tag{1.4}
\end{equation*}
$$

This inequality is of our main interest. The contribution of this paper is to determine, for any $K>0$, the optimal value of the constant $L$. Precisely, our main results are contained in the following theorem.

THEOREM 1.2. Let $\left(x_{n}\right),\left(y_{n}\right)$ be two $\left(\mathcal{F}_{n}\right)$-martingales taking values in $\mathcal{H}$ such that $\left(x_{n}\right)$ is differentially subordinate to $\left(y_{n}\right)$. Fix a nonnegative integer $n$ and a positive number $K$. Then
(i) If $K \leq 1$, then the inequality (1.4) does not hold in general for any $L>0$ as it does not even for $\pm 1$ transforms.
(ii) If $1<K<2$, then the inequality (1.4) holds with

$$
\begin{equation*}
L=L(K)=\frac{K^{2}}{2(K-1)} \exp \left(-K^{-1}\right) \tag{1.5}
\end{equation*}
$$

The constant $L$ is best possible, it is already best possible for $\mathcal{H}=\mathbb{R}$ and $x$ being $a \pm 1$ transform of $y$. Furthermore, the inequality is strict in all nontrivial cases.
(iii) If $K \geq 2$, then the inequality (1.4) holds with

$$
\begin{equation*}
L=L(K)=K \exp \left(K^{-1}-1\right) \tag{1.6}
\end{equation*}
$$

The constant is best possible, it is already best possible for $\mathcal{H}=\mathbb{R}$ and $x$ being $a \pm 1$ transform of $y$. Furthermore, in general, the inequality is not strict.

The optimality of the constants $L$ is understood in the sense that for any $L^{\prime}<L$ there exists a pair $\left(x_{n}\right),\left(y_{n}\right)$ of differentially subordinated martingales, for which (1.4) is not true with $L$ replaced by $L^{\prime}$.

Note that quite unexpectedly, the inequality (1.4) behaves quite differently for $K<2$ and $K \geq 2$. We have different expressions for the constant $L$, and which is more important, for $K<2$ the inequality is strict, while for $K \geq 2$, we may have equality in (1.4) for some nontrivial martingales.

Our second result concerns the LlogL inequality for harmonic functions. Let $\Omega$ be an open subset of $\mathbb{R}^{n}, n$ being a positive integer. Let $D$ be a subdomain of $\Omega$ with $0 \in D$ and $\partial D \subset \Omega$. Denote by $\mu$ the harmonic measure on $\partial D$ with respect to 0 . Consider two harmonic functions $v, w$ on $\Omega$, taking values in a Hilbert space $\mathcal{H}$. Following [3], we say that $v$ is differentially subordinate to $w$ if

$$
|\nabla v(x)| \leq|\nabla w(x)| \quad \text { for } x \in \Omega
$$

Burkholder proved the following result.
Theorem 1.3. Suppose $v$ is differentially subordinate to $w$ and $v(0) \leq$ $w(0)$.
(i) (The weak type $(1,1)$ inequality.) For any positive $\lambda$,

$$
\begin{equation*}
\lambda \mu(\{x \in \partial D:|v(x)| \geq \lambda\}) \leq 2 \int_{\partial D}|w(x)| d \mu(x) \tag{1.7}
\end{equation*}
$$

(ii) (The strong type ( $p, p$ ) inequality.) For $1<p<\infty$,

$$
\begin{equation*}
\left[\int_{\partial D}|v(x)|^{p} d \mu(x)\right]^{1 / p} \leq\left(p^{*}-1\right)\left[\int_{\partial D}|w(x)|^{p} d \mu(x)\right]^{1 / p} \tag{1.8}
\end{equation*}
$$

Our result can be stated as follows.
THEOREM 1.4. Suppose $v$ is differentially subordinate to $w$ and $K>1$. Then

$$
\begin{equation*}
\int_{\partial D}|v(x)| d \mu(x) \leq K \int_{\partial D}|w(x)| \log |w(x)| d \mu(x)+L \tag{1.9}
\end{equation*}
$$

where $L=L(K)$ is defined by (1.5) if $1<K<2$ and (1.6) in the case $K \geq 2$. The constant $L(K)$ is best possible for $K \geq 2$.

We do not know the best constant $L$ for $1<K<2$. We also do not know if (1.9) fails to hold for $K \leq 1$.

The paper is organized as follows. In the next section, we describe the method of proving certain martingale inequalities as well as inequalities for harmonic functions, invented by Burkholder. Section 3 contains the proofs of the inequalities (1.4) and (1.9). The sharpness of these estimates is investigated in Section 4. In the last section, we show that (1.4) is strict for $1<K<2$, and that it fails to hold for $K \leq 1$.

## 2. Burkholder's method

Let us briefly describe the method Burkholder invented for proving inequalities for differentially subordinated martingales/differentially subordinated harmonic functions. Let us first deal with the martingale setting. Given a Borel function $r: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$, suppose we want to show that

$$
\begin{equation*}
\mathbb{E} r\left(x_{n}, y_{n}\right) \geq 0, \quad n=0,1,2, \ldots \tag{2.1}
\end{equation*}
$$

for any martingales $\left(x_{n}\right),\left(y_{n}\right)$ with $\left(x_{n}\right)$ differentially subordinate to $\left(y_{n}\right)$. The main idea is to construct a special function $b$, which satisfies the following properties.
$1^{\circ}$ For $x, y \in \mathcal{H}$ with $|x| \leq|y|$, we have $b(x, y) \geq 0$.
$2^{\circ}$ For any $x, y \in \mathcal{H}, b(x, y) \leq r(x, y)$.
$3^{\circ}$ For any $x, y \in \mathcal{H}$ there exist $A=A(x, y), B=B(x, y) \in \mathcal{H}$ such that for any $h, k \in \mathcal{H}$ with $|h| \leq|k|$,

$$
b(x+h, y+k) \geq b(x, y)+A(x, y) \cdot h+B(x, y) \cdot k
$$

(if $b$ is differentiable in $(x, y)$ then one is forced to take $A(x, y)=\frac{\partial b}{\partial x}(x, y)$, $\left.B(x, y)=\frac{\partial b}{\partial y}(x, y)\right)$.
These conditions immediately yield (2.1): note that by $3^{\circ}$, we have, for any $n \geq 0$,

$$
\mathbb{E} b\left(x_{n}, y_{n}\right) \leq \mathbb{E} b\left(x_{n+1}, y_{n+1}\right)
$$

Combining this inequality with $1^{\circ}$ and $2^{\circ}$, we may write

$$
\begin{equation*}
\mathbb{E} r\left(x_{n}, y_{n}\right) \geq \mathbb{E} b\left(x_{n}, y_{n}\right) \geq \mathbb{E} b\left(x_{n-1}, y_{n-1}\right) \geq \cdots \geq \mathbb{E} b\left(x_{0}, y_{0}\right) \geq 0 \tag{2.2}
\end{equation*}
$$

thus completing the proof.
The inequalities for harmonic functions can be proved in a similar manner. Assume we want to establish an inequality

$$
\int_{\partial D} r(v(x), w(x)) d \mu(x) \geq 0
$$

for differentially subordinated harmonic functions $v, w$. Again, the key tool is the special function $b$, satisfying $1^{\circ}, 2^{\circ}$, and the following harmonic analogue of the condition $3^{\circ}$.
$3^{\circ \prime}$ If $v$ is differentially subordinate to $w$, then $b(v, w)$ is superharmonic on $\Omega$.
Therefore, as in (2.2), using $1^{\circ}, 2^{\circ}$, and $3^{\circ \prime}$,

$$
\begin{equation*}
\int_{\partial D} r(v(x), w(x)) d \mu(x) \geq \int_{\partial D} b(v(x), w(x)) d \mu(x) \geq b(v(0), w(0)) \geq 0 . \tag{2.3}
\end{equation*}
$$

For example, let us consider the weak type estimates (1.2) and (1.7). Clearly, by homogeneity, it suffices to prove them for $\lambda=1$; then we have $r(x, y)=$ $2|y|-\chi_{\{|x| \geq 1\}}$. Following Burkholder [3], consider $b: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ defined by

$$
b(x, y)= \begin{cases}|y|^{2}-|x|^{2} & \text { if }|x|+|y| \leq 1  \tag{2.4}\\ 2|y|-1 & \text { if }|x|+|y|>1\end{cases}
$$

Then $b$ satisfies $1^{\circ}, 2^{\circ}, 3^{\circ}$, and $3^{\circ \prime}$, which yields (1.2) and (1.7).
In the proofs of Theorems 1.2 and 1.4, we follow the same pattern and construct the special function $u$ with respect to $r(x, y)=K|y| \log |y|-|x|+L$.

## 3. Proofs of (1.4) and (1.9)

We start from defining the special function $u: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$. Our approach is based on the integration method, introduced by the author in [5]. The special function is obtained by integration of scaled function $b$ from the preceding section against a positive kernel. Then most of its properties follow by the ones of the function $b$. Precisely, let

$$
\begin{align*}
u(x, y) & =\int_{1}^{\infty} b(x / t, y / t) d t  \tag{3.1}\\
& = \begin{cases}|y|^{2}-|x|^{2} & \text { if }|x|+|y| \leq 1 \\
2|y| \log (|x|+|y|)-2|x|+1 & \text { if }|x|+|y|>1\end{cases}
\end{align*}
$$

We start from some technical result to be needed later.
Lemma 3.1. Fix $y \in \mathcal{H}$. For $1<K \leq 2$, let

$$
\psi_{K}(s)=2|y| \log (s+|y|)+\left(\frac{2}{K}-2\right) s, \quad s \geq(1-|y|)^{+} .
$$

Then $\psi_{K}$ attains its maximum only in one point $\frac{|y|}{K-1} \vee(1-|y|)$.
Proof. Straightforward analysis of the derivative.
The two lemmas below present the most important properties of the function $u$.

Lemma 3.2. (i) If $\left(x_{n}\right)$ is a martingale which is differentially subordinate to a martingale $\left(y_{n}\right)$, then for any nonnegative integer $n$,

$$
\begin{equation*}
\mathbb{E} u\left(x_{n}, y_{n}\right) \geq 0 . \tag{3.2}
\end{equation*}
$$

(ii) If $v, w: \Omega \rightarrow \mathcal{H}$ are harmonic functions and $v$ is differentially subordinate to $w$, then

$$
\int_{\partial D} u(v(x), w(x)) d \mu(x) \geq 0
$$

Proof. (i) For any positive $t,\left(x_{n} / t\right)$ is differentially subordinated to $\left(y_{n} / t\right)$. Therefore, by (2.2), for any nonnegative integer $n$ we have

$$
\mathbb{E} b\left(x_{n} / t, y_{n} / t\right) \geq 0
$$

and Fubini's theorem yields the claim.
(ii) We use the same scaling argument and (2.3).

Lemma 3.3. Fix $x, y \in \mathcal{H}$. For $K>1$, recall $L=L(K)$ given by (1.5) and (1.6).
(i) If $1<K<2$, then

$$
\begin{equation*}
u(x, y) \leq 2|y| \log \frac{2 L|y|}{K}-\frac{2}{K}|x|+1 \tag{3.3}
\end{equation*}
$$

Furthermore, if $|x|^{2}+|y|^{2}>0$,

$$
\begin{equation*}
\text { we have equality in (3.3) iff }|x|+|y| \geq 1 \text { and }|x|=\frac{1}{K-1}|y| \text {. } \tag{3.4}
\end{equation*}
$$

(ii) If $K \geq 2$, then

$$
\begin{equation*}
u(x, y) \leq K|y| \log \frac{2 L|y|}{K}-|x|+\frac{K}{2} \tag{3.5}
\end{equation*}
$$

Proof. (i) If $|x|+|y| \leq 1$, then the inequality (3.3) is equivalent to

$$
|y|^{2}-2|y| \log \frac{2 L|y|}{K}-1+\frac{1}{K^{2}} \leq|x|^{2}-\frac{2}{K}|x|+\frac{1}{K^{2}}=\left(|x|-\frac{1}{K}\right)^{2}
$$

Obviously, the right-hand side is nonnegative. The left-hand side, as a function of $|y| \in[0,1]$, is strictly concave and vanishes along with its derivative at $|y|=1-K^{-1}$. Hence, we are done. Note that (3.4) holds true in this case.

If $|x|+|y|>1$, then (3.3) takes form

$$
\begin{equation*}
2|y| \log (|x|+|y|)+\left(\frac{2}{K}-2\right)|x| \leq 2|y| \log \frac{2 L|y|}{K} . \tag{3.6}
\end{equation*}
$$

By Lemma 3.1, if $|y| /(K-1) \geq 1-|y|$ (equivalently, $\frac{|y|}{K-1}+|y| \geq 1$ ), then the left-hand side does not exceed

$$
\psi_{K}\left(\frac{|y|}{K-1}\right)=2|y| \log \frac{K|y|}{K-1}-\frac{2}{K}|y|=2|y| \log \frac{2 L|y|}{K}
$$

with equality only if $|x|=|y| /(K-1)$. This shows (3.3) and (3.4). Finally, if $|y| /(K-1)<1-|y|$, then Lemma 3.1 reduces (3.6) to the case $|x|+|y|=1$, which we have already considered.
(ii) This is proved exactly in the same manner: for $|x|+|y| \leq 1$, one rewrites (3.5) in the form

$$
|y|^{2}-K|y| \log \frac{2 L|y|}{K}+\frac{1}{4}-\frac{K}{2} \leq|x|^{2}-|x|+\frac{1}{4}=\left(|x|-\frac{1}{2}\right)^{2}
$$

It is clear that right-hand side is nonnegative, while the left-hand side, considered as a function of $|y|$, is concave on $[0,1]$ and vanishes along with its derivative for $|y|=\frac{1}{2}$.

If $|x|+|y|>1$, then (3.5) is equivalent to

$$
\begin{equation*}
2|y| \log (|x|+|y|)-|x|+1 \leq K|y| \log \frac{2 L|y|}{K}+\frac{K}{2} \tag{3.7}
\end{equation*}
$$

Lemma 3.1 reduces the case $|y|<\frac{1}{2}$ (or $\left.|y|<1-|y|\right)$ to the case $|x|+|y|=1$, which we have just considered. If $|y| \geq \frac{1}{2}$, then, by Lemma 3.1, the left-hand side of (3.7) does not exceed $\psi_{2}(|y|)+1$ and we are left to show that

$$
\psi_{2}(|y|)+1=2|y| \log 2|y|-|y|+1 \leq K|y| \log \frac{2 L|y|}{K}+\frac{K}{2}
$$

or, equivalently, $(K-2)[2|y| \log (2|y|)-2|y|+1] \geq 0$. However, $K \geq 2$ and the expression in the square bracket is nonnegative. The proof is complete.

Now, we are ready for the following proof.
Proof of the inequality (1.4). Fix a nonnegative integer $n$ and let $\left(x_{n}\right)$, $\left(y_{n}\right)$ be two martingales, with $\left(x_{n}\right)$ being differentially subordinate to $\left(y_{n}\right)$. Then $\left(x_{n}^{\prime}\right)=\left(x_{n} \cdot K / 2 L\right)$ is differentially subordinated to $\left(y_{n}^{\prime}\right)=\left(y_{n} \cdot K / 2 L\right)$. Therefore, we may apply Lemmas 3.2 and 3.3 to these new martingales; for $1<K<2$, we obtain

$$
\begin{align*}
K \mathbb{E}\left|y_{n}\right| \log \left|y_{n}\right|-\mathbb{E}\left|x_{n}\right|+L & =L\left[2 \mathbb{E}\left|y_{n}^{\prime}\right| \log \frac{2 L\left|y_{n}^{\prime}\right|}{K}-\frac{2}{K} \mathbb{E}\left|x_{n}^{\prime}\right|+1\right]  \tag{3.8}\\
& \geq L \mathbb{E} u\left(x_{n}^{\prime}, y_{n}^{\prime}\right) \geq 0,
\end{align*}
$$

while for $K \geq 2$,

$$
\begin{aligned}
K \mathbb{E}\left|y_{n}\right| \log \left|y_{n}\right|-\mathbb{E}\left|x_{n}\right|+L & =\frac{2 L}{K}\left[K \mathbb{E}\left|y_{n}^{\prime}\right| \log \frac{2 L\left|y_{n}^{\prime}\right|}{K}-\mathbb{E}\left|x_{n}^{\prime}\right|+\frac{K}{2}\right] \\
& \geq \frac{2 L}{K} \mathbb{E} u\left(x_{n}^{\prime}, y_{n}^{\prime}\right) \geq 0 .
\end{aligned}
$$

Proof of the inequality (1.9). We repeat all the arguments from the proof above, replacing the martingales $x_{n}, y_{n}$ by the functions $v, w$, and expectations by the integrals over $\partial D$.

## 4. Optimality of $L=L(K)$

Throughout this section, we assume $\mathcal{H}=\mathbb{R}$.
Let us start with two simple properties of the function $u$. The conditional versions of the identities below will be needed later.

Lemma 4.1. Let $d$ be a centered random variable and $x, y$ be two positive numbers.
(i) If $-x \leq d \leq y$ almost surely, then

$$
\begin{equation*}
\mathbb{E} u(x+d, y+d)=u(x, y) \tag{4.1}
\end{equation*}
$$

(ii) If $y \geq 1$ and $d \geq-y$ almost surely, then

$$
\begin{equation*}
\mathbb{E} u(d, y+d)=u(0, y)+\mathbb{E} \chi_{\{d \geq 0\}}\left(2(y+d) \log \frac{y+2 d}{y}-4 d\right) \tag{4.2}
\end{equation*}
$$

Proof. (i) From (3.1), we infer that the function $\phi_{x, y}:[-x, y] \rightarrow \mathbb{R}$ given by $\phi_{x, y}(r)=u(x+r, y-r)$ is linear. This yields (4.1).
(ii) We have

$$
\begin{aligned}
\mathbb{E}(u(d, y+d)-u(0, y)) & =\mathbb{E}[u(d, y+d)-u(0, y)-2 d(\log y+1)] \\
& =\mathbb{E} \chi_{\{d \geq 0\}}[u(d, y+d)-u(0, y)-2 d(\log y+1)] \\
& =\mathbb{E} \chi_{\{d \geq 0\}}\left[2(y+d) \log \frac{y+2 d}{y}-4 d\right]
\end{aligned}
$$

Now, we will construct a crucial pair of martingales. Let the underlying probability space be the interval $[0,1]$ with the Lebesgue measure. Fix numbers $\beta>0$ and $\gamma>1$. Let, for $k=1,2, \ldots$,

$$
\begin{aligned}
T_{k} & =(1+\beta)^{k-1} \geq 1 \\
m_{k} & =\frac{\gamma-1}{2 \gamma} \cdot(1+\beta)^{1-k}\left(1-\frac{2 \beta}{2 \gamma+\beta(\gamma+1)}\right)^{k-1}
\end{aligned}
$$

Now, define (for simplicity, we identify a set with its indicator function)

$$
\begin{aligned}
x_{0} & =y_{0} \equiv \frac{1}{2} \\
d x_{1} & =-d y_{1}=-\frac{1}{2} \cdot\left[0, \frac{\gamma-1}{2 \gamma}\right]+\frac{1}{2} \cdot \frac{\gamma-1}{\gamma+1} \cdot\left[\frac{\gamma-1}{2 \gamma}, 1\right] .
\end{aligned}
$$

Furthermore, for $k=1,2, \ldots$,

$$
\begin{aligned}
d x_{2 k} & =d y_{2 k}=\frac{\beta T_{k}}{2} \cdot\left[0, \frac{2 \gamma m_{k}}{2 \gamma+\beta(\gamma+1)}\right]-\frac{\gamma T_{k}}{\gamma+1} \cdot\left(\frac{2 \gamma m_{k}}{2 \gamma+\beta(\gamma+1)}, m_{k}\right], \\
d x_{2 k+1} & =-d y_{2 k+1} \\
& =-\frac{\beta T_{k}}{2} \cdot\left[0, m_{k+1}\right]+\frac{T_{k}(2 \gamma+\beta(\gamma-1))}{2(\gamma+1)} \cdot\left(m_{k+1}, \frac{2 \gamma m_{k}}{2 \gamma+\beta(\gamma+1)}\right] .
\end{aligned}
$$

Note that $\left(x_{n}\right)$ is a $\pm 1$ transform of $\left(y_{n}\right)$. Some of the properties of these martingales are described in the following lemma.

Lemma 4.2. For $k=1,2, \ldots$, we have

$$
\begin{align*}
\left|x_{k-1}\right|+\left|y_{k-1}\right| & \geq 1 \quad \text { on }[0,1]  \tag{4.3}\\
\left(x_{2 k}, y_{2 k}\right) & =\left(\frac{\beta T_{k}}{2}, T_{k}+\frac{\beta T_{k}}{2}\right) \quad \text { on }\left[0, \frac{2 \gamma m_{k}}{2 \gamma+\beta(\gamma+1)}\right]  \tag{4.4}\\
\left(x_{2 k-1}, y_{2 k-1}\right) & =\left(0, T_{k}\right) \quad \text { on }\left[0, m_{k}\right]  \tag{4.5}\\
\left|x_{2 k-1}\right| & =\gamma\left|y_{2 k-1}\right| \quad \text { on }\left(m_{k}, 1\right] . \tag{4.6}
\end{align*}
$$

Proof. Straightforward induction.
Lemma 4.3. For $k=1,2, \ldots$ we have

$$
\begin{equation*}
\mathbb{E} u\left(x_{2 k+1}, y_{2 k+1}\right)=\mathbb{E} u\left(x_{2 k}, y_{2 k}\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{align*}
\mathbb{E} u\left(x_{2 k}, y_{2 k}\right)= & \mathbb{E} u\left(x_{2 k-1}, y_{2 k-1}\right)  \tag{4.8}\\
& +\frac{2 \gamma m_{k} T_{k}}{2 \gamma+\beta(\gamma+1)}[(2+\beta) \log (1+\beta)-2 \beta]
\end{align*}
$$

Proof. The property (4.4), combined with the inequality

$$
-\frac{\beta T_{k}}{2} \leq d x_{2 k+1} \leq T_{k}+\frac{\beta T_{k}}{2} \quad \text { on }\left[0, \frac{2 \gamma m_{k}}{2 \gamma+\beta(\gamma+1)}\right]
$$

and Lemma 4.1(i), gives (4.7). Similarly, the property (4.5), together with $d x_{2 k} \geq-T_{k}$ on [ $0, m_{k}$ ], in view of Lemma 4.1(ii), yield

$$
\begin{aligned}
& \mathbb{E} u\left(x_{2 k}, y_{2 k}\right)-\mathbb{E} u\left(x_{2 k-1}, y_{2 k-1}\right) \\
& \quad=\mathbb{P}\left(d x_{2 k} \geq 0\right) \cdot\left[2\left(T_{n}+\frac{\beta T_{n}}{2}\right) \log \frac{T_{n}+\beta T_{n}}{T_{n}}-2 \beta T_{n}\right] \\
& \quad=\frac{2 \gamma m_{k} T_{k}}{2 \gamma+\beta(\gamma+1)}[(2+\beta) \log (1+\beta)-2 \beta],
\end{aligned}
$$

which is (4.8).
Proof of the sharpness of (1.4) with $L=L(K)$ and (1.9) for $K \geq 2$. We consider the cases $K \geq 2$ and $1<K<2$ separately.

The case $K \geq 2$. We simply set $x_{n}=y_{n} \equiv \exp \left(K^{-1}-1\right)$ almost surely, $n=0,1,2, \ldots$ and obtain equality in (1.4). Exactly in the same manner, the choice $v=w \equiv \exp \left(K^{-1}-1\right)$ on $\Omega$ gives equality in (1.9).

The case $1<K<2$. This is more involved. For $\gamma=1 /(K-1)>1$, let $\left(x_{n}\right),\left(y_{n}\right)$ be the martingales constructed above and set $x_{n}^{\prime}=x_{n} \cdot 2 L / K$,
$y_{n}^{\prime}=y_{n} \cdot 2 L / K$. For positive integer $k$, let

$$
\begin{aligned}
z_{2 k-1} & =\frac{1}{L}\left[K\left|y_{2 k-1}^{\prime}\right| \log \left|y_{2 k-1}^{\prime}\right|-\left|x_{2 k-1}^{\prime}\right|+L\right] \\
& =2 y_{2 k-1} \log \left(\frac{2 L}{K} y_{2 k-1}\right)-\frac{2}{K}\left|x_{2 k-1}\right|+1
\end{aligned}
$$

Combining (3.4), (4.3), and (4.6), we may write

$$
\begin{align*}
\mathbb{E} z_{2 k-1}= & \mathbb{E} z_{2 k-1} \chi_{\left[0, m_{k}\right]}+\mathbb{E} z_{2 k-1} \chi_{\left(m_{k}, 1\right]}  \tag{4.9}\\
= & \mathbb{E} z_{2 k-1} \chi_{\left[0, m_{k}\right]}+\frac{K}{2} \mathbb{E} u\left(x_{2 k-1}, y_{2 k-1}\right) \chi_{\left(m_{k}, 1\right]} \\
= & \mathbb{E} z_{2 k-1} \chi_{\left[0, m_{k}\right]}-\frac{K}{2} \mathbb{E} u\left(x_{2 k-1}, y_{2 k-1}\right) \chi_{\left[0, m_{k}\right]} \\
& +\frac{K}{2} \mathbb{E} u\left(x_{2 k-1}, y_{2 k-1}\right) .
\end{align*}
$$

Now, fix $\varepsilon>0$. By (4.7) and (4.8),

$$
\begin{aligned}
\frac{K}{2} \mathbb{E} u\left(x_{2 k-1}, y_{2 k-1}\right) & =\frac{K}{2}\left[\mathbb{E} u\left(x_{2 k-1}, y_{2 k-1}\right)-\mathbb{E} u\left(x_{0}, y_{0}\right)\right] \\
& =\frac{K}{2} \sum_{n=0}^{2 k-2}\left[\mathbb{E} u\left(x_{n+1}, y_{n+1}\right)-\mathbb{E} u\left(x_{n}, y_{n}\right)\right] \\
& =\frac{K}{2} \sum_{n=1}^{k-1}\left[\mathbb{E} u\left(x_{2 n}, y_{2 n}\right)-\mathbb{E} u\left(x_{2 n-1}, y_{2 n-1}\right)\right] \\
& =\frac{K}{2} \sum_{n=1}^{k-1} \frac{2 \gamma m_{n} T_{n}}{2 \gamma+\beta(\gamma+1)}[(2+\beta) \log (1+\beta)-2 \beta] \\
& \leq \frac{K \gamma((2+\beta) \log (1+\beta)-2 \beta)}{2 \gamma+\beta(\gamma+1)} \sum_{n=1}^{\infty} m_{n} T_{n} \\
& =\frac{K \gamma((2+\beta) \log (1+\beta)-2 \beta)}{2 \gamma+\beta(\gamma+1)} \cdot \frac{\gamma-1}{2 \gamma} \cdot \frac{2 \gamma+\beta(\gamma+1)}{2 \beta} \\
& <\varepsilon
\end{aligned}
$$

for $\beta$ sufficiently close to 0 . Now, in virtue of (4.5), we have

$$
\mathbb{E} z_{2 k-1} \chi_{\left[0, m_{k}\right]}=m_{k}\left(2 T_{k} \log \frac{2 L T_{k}}{K}+1\right)<\varepsilon
$$

for $k$ large enough. Finally, by (4.5),

$$
\frac{K}{2} \mathbb{E} u\left(x_{2 k-1}, y_{2 k-1}\right) \chi_{\left[0, m_{k}\right]}=\frac{K}{2} m_{k}\left(2 T_{k} \log T_{k}+1\right)<\varepsilon
$$

for $k$ large enough. Therefore, by (4.9), we have shown that by a proper choice of $\beta$ and $k, \mathbb{E} z_{2 k-1}$ can be arbitrarily close to 0 , which clearly implies the optimality of $L=L(K)$.

## 5. Strictness and the case $K \leq 1$

Proof of the strictness of (1.4) for $1<K<2$. Assume $\left(x_{n}\right)$ is differentially subordinate to $\left(y_{n}\right)$. Fix an integer $n$ and suppose $\mathbb{P}\left(\left|x_{n}\right|^{2}+\left|y_{n}\right|^{2}>0\right)>0$. Consider the martingales $\left(x_{n}^{\prime}\right)=\left(x_{n} \cdot K / 2 L\right),\left(y_{n}^{\prime}\right)=\left(y_{n} \cdot K / 2 L\right)$ as in the proof of (1.4). By (1.3), we have

$$
\mathbb{E}\left|x_{n}^{\prime}\right|^{2} \leq \mathbb{E}\left|y_{n}^{\prime}\right|^{2}
$$

which implies $\mathbb{P}\left(\left|x_{n}^{\prime}\right|^{2}+\left|y_{n}^{\prime}\right|^{2}>0,\left|x_{n}^{\prime}\right| \leq\left|y_{n}^{\prime}\right|\right)>0$. Therefore, by (3.4), the first inequality in (3.8) is strict, and hence so is the inequality (1.4).

The inequality (1.4) fails to hold for $K \leq 1$. Suppose (1.4) holds for some $K \leq 1$ and $L<\infty$. Fix $K^{\prime} \in(1,2)$, let $\left(y_{n}\right)$ be any martingale and $\left(x_{n}\right)$ be its $\pm 1$ transform. Since $t \log t \geq-e^{-1}$ for nonnegative $t$, we may write

$$
\begin{aligned}
\mathbb{E}\left|x_{n}\right| & \leq K \mathbb{E}\left|y_{n}\right| \log \left|y_{n}\right|+L \\
& =K \mathbb{E}\left(\left|y_{n}\right| \log \left|y_{n}\right|+e^{-1}\right)+L-K e^{-1} \\
& \leq K^{\prime} \mathbb{E}\left(\left|y_{n}\right| \log \left|y_{n}\right|+e^{-1}\right)+L-K e^{-1} \\
& =K^{\prime} \mathbb{E}\left|y_{n}\right| \log \left|y_{n}\right|+L+\left(K^{\prime}-K\right) e^{-1}
\end{aligned}
$$

which, by Theorem $1.2\left(\right.$ ii), implies $L\left(K^{\prime}\right) \leq L+\left(K^{\prime}-K\right) e^{-1}$ and contradicts (1.5) if $K^{\prime}$ is taken sufficiently close to 1 .

Acknowledgments. The author obtained the results above during his visit to Université de Franche-Comte in Besançon, France. The author would also like to thank the referee for the careful reading of the first version of the paper.

## References

[1] Burkholder, D. L., A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997-1011. MR 0632972
[2] Burkholder, D. L., Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647-702. MR 0744226
[3] Burkholder, D. L., Differential subordination of harmonic functions and martingales, Harmonic analysis and partial differential equations (El Escorial, 1987), Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 1-23. MR 1013814
[4] Burkholder, D. L., Explorations in martingale theory and its applications, École d'Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 1-66. MR 1108183
[5] Osȩkowski, A., Inequalities for dominated martingales, Bernoulli 13 (2007), 54-79. MR 2307394
[6] Suh, Y., A sharp weak type ( $p, p$ ) inequality $(p>2)$ for martingale transforms and other subordinate martingales, Trans. Amer. Math. Soc. 357 (2005), 1545-1564 (electronic). MR 2115376
[7] Wang, G., Differential subordination and strong differential subordination for continu-ous-time martingales and related sharp inequalities, Ann. Probab. 23 (1995), 522-551. MR 1334160

Adam Osȩkowski, Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl

