Abstract
Methods from numerical algebraic geometry are applied in combination with techniques from classical representation theory to show that the variety of 3 × 3 × 4 tensors of border rank 4 is cut out by polynomials of degree 6 and 9. Combined with results of Landsberg and Manivel, this furnishes a computational solution of an open problem in algebraic statistics, namely, the set-theoretic version of Allman’s salmon conjecture for 4 × 4 × 4 tensors of border rank 4. A proof without numerical computation was given recently by Friedland and Gross.
Citation
Daniel J. Bates. Luke Oeding. "Toward a Salmon Conjecture." Experiment. Math. 20 (3) 358 - 370, 2011.
Information