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Methods from numerical algebraic geometry are applied in com-
bination with techniques from classical representation theory to
show that the variety of 3 × 3 × 4 tensors of border rank 4 is
cut out by polynomials of degree 6 and 9. Combined with re-
sults of Landsberg and Manivel, this furnishes a computational
solution of an open problem in algebraic statistics, namely, the
set-theoretic version of Allman’s salmon conjecture for 4 × 4 × 4
tensors of border rank 4. A proof without numerical computation
was given recently by Friedland and Gross.

1. INTRODUCTION

In 2007, E. Allman offered a prize of Alaskan salmon to
anyone who could find the defining ideal of the following
secant variety:

σ4
(
P 3 × P 3 × P 3)

[Allman 10]. Recall that if A,B,C are vector spaces, then
the Segre product is defined by the following embedding
into the tensor product:

Seg : PA× PB × PC → P (A⊗B ⊗ C),
([a], [b], [c]) �→ [a⊗ b⊗ c].

Further recall that if X ⊂ PN is a variety, then the k-
secant variety of X, denoted by σk (X) ⊂ PN , is the
Zariski closure of all points on secant P k−1 ’s to X. For
simplicity, we will drop the reference to the Segre embed-
ding and write σk (PA× PB × PC) for the secant variety
to the Segre product.

Secant varieties have been studied classically, but we
have a renewed interest in their study because of the
salmon prize and other related recent works on the
subject (see [Allman and Rhodes 03, Landsberg and
Manivel 08, Catalisano et al. 08, Landsberg 08, Allman
and Rhodes 08, Friedland 10, Landsberg and Weyman 07,
Sidman and Sullivant 09]).

Allman’s ideal-theoretic question is still open. Our
main result is Theorem 3.10, in which we give a geo-
metric argument (relying on [Landsberg and Manivel 08,
Corollary 5.6] and the recent correction of the proof in
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[Friedland 10]) combined with a calculation using numer-
ical algebraic geometry to show that up to high numerical
accuracy, σ4

(
P 3 × P 3 × P 3

)
is cut out set-theoretically

by 1728 equations in degree 5, 1000 equations in degree
6, and 8000 equations in degree 9.

Even though these dimensions are large, we show that
in each degree, the large space of polynomials can be
constructed from a small number of representatives via
substitutions (see Remarks 2.2, 3.2, and 3.5). Theorem
3.10 solves the set-theoretic version of Allman’s question
(up to high numerical accuracy), uses equations of lower
degree than Friedland’s solution [Friedland 10], and gives
evidence for a conjecture to the ideal-theoretical question
asked by Allman.

Remark 1.1. After the first version of this arti-
cle appeared on arXiv, Friedland and Gross proved
Theorem 3.10 without relying on numerical methods
[Friedland and Gross 11]. See Example 3.6.

One practical interest of the secant variety
σ4

(
P 3 × P 3 × P 3

)
is in phylogenetics, where the

secant variety is associated with the statistical model for
evolution called the mixture model of independence mod-
els [Allman and Rhodes 03, Allman and Rhodes 08].
The main motivation to study this particular model is
that [Allman and Rhodes 08, Theorem 11] shows that
finding the polynomial invariants for this small evolu-
tionary tree would provide all polynomial invariants for
the statistical model for any binary evolutionary tree
with any number of states.

Note that in this paper we work exclusively over the
complex numbers. However, in phylogenetics, one is of-
ten interested in studying models restricted to the real
numbers, the positive real numbers, or the probability
simplex. Since equations for a given model considered
over the complex numbers also provide equations for the
restricted model, it is natural to start with the complex
setting and then study the additional necessary equa-
tions and inequalities imposed by the given restriction.
We leave this further study to other works.

While Allman asks for the generators of the defining
ideal of the secant variety, a collection of set-theoretic
defining equations provides a necessary and sufficient
test on the model for membership. Very recently, it
was proved in [Friedland 10] (without a computer) that
a set of polynomials in degrees 5, 9, and 16 defines
σ4

(
P 3 × P 3 × P 3

)
set-theoretically. Indeed, Friedland’s

set of polynomials does (in theory) allow one to test
whether a given set of data fits the model. Because it

uses polynomials in smaller degree, Theorem 3.10 pro-
vides a more efficient practical membership test for the
model.

On the other hand, Casanellas and Fernandez-
Sanchez have studied more practical issues regarding
phylogenetic tree construction using algebraic meth-
ods [Casanellas and Fernandez-Sanchez 09]. In particu-
lar, they point out that for phylogenetic tree reconstruc-
tion, the equations coming from the edges of the tree
(minors of flattenings below) seem to be more relevant
than the equations coming from vertices (the equations
of degrees 5 and 9 are examples of such).

Our equations in degree 6 are not in the ideal of the
equations in degree 5; thus they are nontrivial generators
in the ideal, and Friedland’s result cannot be a set of min-
imal generators of the ideal. We have not found any such
obstructions to our result holding ideal-theoretically, and
this leads to a salmon conjecture that the ideal-theoretic
version of Theorem 3.10 also holds.

This work was begun in October 2008 when Bernd
Sturmfels asked for a Macaulay2-readable file of the
degree-6 polynomials in the ideal of σ4(P 2 × P 2 ×
P 3). Proposition 2.1 is a representation-theoretic de-
scription of these polynomials and corrects minor er-
rors in [Landsberg and Manivel 04, Proposition 6.3] and
[Landsberg and Manivel 08, Remark 5.7]. In Section 2 we
give a brief overview of how these polynomials were con-
structed from their representation-theoretic description.
These equations and other ancillary materials for this pa-
per are available in the ancillary materials that accom-
pany the arXiv version of this paper or by contacting
either author.

At the December 2008 MSRI workshop on algebraic
statistics, Oeding presented Conjecture 3.8, which, when
combined with an argument of Landsberg and Manivel,
implies our main result. This argument is discussed in
Section 3. The missing ingredient for the conjecture was
to understand the zero-set of the degree-6 polynomials.
Shortly after this workshop, Oeding asked for help from
Bates and the Bertini team.

The two authors worked together to get the correct
mixture of initial input and computing strategies in order
to find a computation that would finish in a reasonable
amount of time. Finally, on July 12, 2010, a computa-
tion that had taken approximately two weeks on eight
processors (two 2.66-GHz quad-core Xeon 5410s set up
as one head processor and seven worker processors) fin-
ished, providing a numerical proof to Conjecture 3.8. Be-
cause our calculations use numerical approximations, we
say that the proof holds up to high numerical accuracy.
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In Section 4, we discuss our computational methods and
the reliability of this result.

2. SYMMETRY AND THE EQUATIONS IN DEGREE 6

In this section we recall well-known facts about
the variety and equations we are studying. The
main purpose is to set up notation. The reader
who is unfamiliar with these concepts may consult
[Fulton and Harris 91], or for a more detailed account re-
lated to secant varieties, see [Landsberg and Manivel 04,
Landsberg and Manivel 08, Landsberg and Weyman 07]
or the upcoming [Landsberg 11].

Let A,B,C be vector spaces of dimensions a, b, c re-
spectively. The symmetry group of σr (PA× PB × PC)
is the change of coordinates in each factor GL(A) ×
GL(B) × GL(C) (or when A ∼= B ∼= C there is an ad-
ditional symmetric group S3 acting, and the symme-
try group is (GL(A) × GL(B) × GL(C)) � S3). There-
fore we can use tools from representation theory to aid
in our search for defining equations. Since much of this
work has already been done, we only describe the equa-
tions relevant for our application.

The module Sd(A∗ ⊗B∗ ⊗ C∗) of degree-d homoge-
neous polynomials on A⊗B ⊗ C has an isotypic de-
composition (see [Landsberg and Manivel 04, Proposi-
tion 4.1])

Sd(A∗ ⊗B∗ ⊗ C∗)

=
⊕

|π1 |= |π2 |= |π3 |=d
(Sπ1A

∗ ⊗ Sπ2B
∗ ⊗ Sπ3C

∗)⊕mπ 1 , π 2 , π 3 ,

where the πi are partitions of d, and the multiplicity
mπ1 ,π2 ,π3 is the dimension of the highest-weight space
that can be computed via characters. The modules

(Sπ1A
∗ ⊗ Sπ2B

∗ ⊗ Sπ3C
∗)mπ 1 , π 2 , π 2

are called isotypic components, and the individual mod-
ules Sπ1A

∗ ⊗ Sπ2B
∗ ⊗ Sπ3C

∗ are irreducible GL(A) ×
GL(B) × GL(C)-modules, sometimes called Schur mod-
ules.

The ideal of any GL(A) × GL(B) × GL(C)-invariant
variety in P (A⊗B ⊗ C) consists of a subset of the mod-
ules occurring in the isotypic decomposition. If X is a
projective variety, let Is(X) denote the ideal of homoge-
neous degree-s polynomials in the ideal of X.

In general, if X is any variety with ideal gen-
erated in degree 2 (of which the Segre variety
is an example), then Is(σk (X)) = 0 for s ≤ k (see
[Landsberg and Manivel 04, Corollary 3.2]), and in par-
ticular, Is(σ4(PA× PB × PC)) = 0 for s ≤ 4. Also, one

can calculate (by checking every irreducible module of
degree-5 polynomials) that

I5
(
σ4

(
P 2 × P 2 × P 3)) = 0.

In addition, we have found the following result.

Proposition 2.1. Let A ∼= B ∼= C 3 , C ∼= C 4 , and let M6

denote the module S2,2,2A
∗ ⊗ S2,2,2B

∗ ⊗ S3,1,1,1C
∗. Then

M6 = I6 (σ4 (PA× PB × PC)) as GL(A) × GL(B) ×
GL(C)-modules.

Proof. The module M6 was found by follow-
ing the ideal membership test described in
[Landsberg and Manivel 04]. We repeated the pro-
cedure outlined there as follows. We first decomposed
S6(A∗ ⊗B∗ ⊗ C∗) into its isotypic decomposition. This
plethysm calculation can be done in one line using the
program LiE [Van Leeuwen et al. 92] as

plethysm([6],[1,0,1,0,1,0,0],A2A2A3)

or by using the procedure mults, which we implemented
in Maple and can be found in the file iso mults.mw,
available with our ancillary materials. Next we computed
a basis of the highest-weight space for each isotypic com-
ponent. We implemented in Maple a standard algorithm
to compute a basis of the highest-weight space in the
image of the relevant Schur functors associated to each
module.

This implementation is in the file called
poly make algo.mw, which also may be found with
our ancillary materials. A detailed exposition of this
concept may be found below.

We applied this algorithm to each module in the iso-
typic decomposition, and we checked by direct evaluation
to see whether any linear subspace of the highest-weight
space of an isotypic component vanished on the variety.
The only module that passed this test was M6 , which
occurs with multiplicity 1 in S6(A∗ ⊗B∗ ⊗ C∗).

We note that there was some confusion between the
statements and proofs in the preprint and the print ver-
sions of [Landsberg and Manivel 04, Proposition 6.3] as
well as in the statement [Landsberg and Manivel 08, Re-
mark 5.7], and we believe that Proposition 2.1 corrects
this confusion.

The module S2,2,2C 3 is one-dimensional, and as a vec-
tor space, the module S3,1,1,1C 4 is isomorphic to S2C 4 ,
which is 10-dimensional. Our construction produces a ba-
sis of the module M6 consisting of 10 polynomials that
also correspond to the 10 semistandard fillings (strictly



Bates and Oeding: Toward a Salmon Conjecture 361

increasing in the columns and nondecreasing in the rows)
of the tableau of shape (3, 1, 1, 1) with the numbers
1, 2, 3, 4. We list these fillings below. The basis of poly-
nomials is contained in the file deg 6 salmon.txt, which
is available with our ancillary materials, as mentioned
above.

Here is a brief overview of an algorithm to con-
struct the polynomials in Sπ1A

∗ ⊗ Sπ2B
∗ ⊗ Sπ3C

∗. While
this algorithm is based on classical methods, we re-
fer the reader to the works [Landsberg 11, Oeding 09,
Oeding 11], which use similar language, for more details.
We point out that the complexity of any algorithm to
compute polynomials from Schur modules will depend
on dimension and degree. This piece-by-piece algorithm
attempts work with the smallest-dimensional space pos-
sible at each step, thus reducing the complexity and in-
creasing the chances that the computation will finish in
a reasonable amount of time.

For concreteness, we fix the degree d = 6 and describe
the algorithm that produces the highest-weight vector
(and a weight basis) of the module S2,2,2A

∗ ⊗ S2,2,2B
∗ ⊗

S3,1,1,1C
∗, with dim(A) = dim(B) = 3 and dim(C) = 4.

The input to the algorithm is the fillings of the tableau of
shapes π1 , π2 , π3 . The first step is to construct a highest-
weight vector in A⊗6 ⊗B⊗6 ⊗ C⊗6 . For this, we work one
vector space at a time. Suppose a1 , a2 , a3 is a basis of
A∗. Then, a1 ⊗ a1 ⊗ a2 ⊗ a2 ⊗ a3 ⊗ a3 is a source weight
vector for the partition (2, 2, 2), and can be represented
by the Young tableau

1 1
2 2
3 3

In general, source vectors for Sπ1A
∗ correspond to

Young tableaux of shape π1 filled with the numbers
1, . . . ,dim(A∗).

The Young symmetrizer

Yπ1 : A∗ ⊗A∗ ⊗A∗ ⊗A∗ ⊗A∗ ⊗A∗

→ A∗ ⊗A∗ ⊗A∗ ⊗A∗ ⊗A∗ ⊗A∗

is the map that skew-symmetrizes the vector spaces A∗

in positions corresponding to the columns of the fill-
ing associated with π1 and then symmetrizes the vector
spaces corresponding to the rows of the filling associated
with π1 .

The Young symmetrizers do not change the weight of
a vector, and in particular, if the source vector is of the
highest possible weight for the tableau of shape π1 , then
the image in Sπ1A ⊂ (A∗)⊗6 will have highest weight. We
perform the analogous construction in the B∗ and C∗ fac-

tors and take the tensor product of the resulting highest-
weight vectors.

The resulting vector we have constructed is in Sπ1A
∗ ⊗

Sπ2B
∗ ⊗ Sπ3C

∗. However, it is embedded in (A∗)⊗6 ⊗
(B∗)⊗6 ⊗ (C∗)⊗6 . The final step is to perform the reorder-
ing isomorphism

(A∗)⊗6 ⊗ (B∗)⊗6 ⊗ (C∗)⊗6 → (A∗ ⊗B∗ ⊗ C∗)⊗6 ,

and then symmetrize the result to arrive at a polynomial
in S6(A∗ ⊗B∗ ⊗ C∗).

The symmetrization map is also defined by the fill-
ings of the Young tableau; namely, a given indecompos-
able vector in Sπ1A

∗ ⊗ Sπ2B
∗ ⊗ Sπ3C

∗ will be the tensor
product of six vectors from A∗, six from B∗, and six from
C∗, from which we extract six triples consisting of one
vector from each of A∗, B∗, and C∗, where the triples are
determined by those with matching labels in the three
fillings of the Young tableau. The symmetrization is then
found simply by taking the symmetric product of the re-
sulting six triples. (One must make judicious choices in
fillings so that the result of this construction is nonzero.
However, an in-depth description of how to find good
fillings is beyond the scope of this work.)

We computed the highest-weight vector in S2,2,2A
∗ ⊗

S2,2,2B
∗ ⊗ S3,1,1,1C

∗ using the fixed fillings

1 2
3 4
5 6

1 4
2 5
3 6

1 3 6
2
4
5

for π1 , π2 , and π3 respectively to define the Young sym-
metrizers. We paired these partitions with source vector

1 1
2 2
3 3

for both of S2,2,2A
∗ and S2,2,2B

∗ and the source vector

1 1 1
2
3
4

for S3,1,1,1C
∗. To produce a basis of S2,2,2A

∗ ⊗ S2,2,2B
∗ ⊗

S3,1,1,1C
∗ consisting of ten weight vectors, one can use the

same Young symmetrizer and source vectors for S2,2,2A
∗

and S2,2,2B
∗, but let the source vector for S3,1,1,1C

∗ be
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each of the following:

1 1 1
2
3
4

1 1 2
2
3
4

1 1 3
2
3
4

1 1 4
2
3
4

1 2 2
2
3
4

1 2 3
2
3
4

1 2 4
2
3
4

1 3 3
2
3
4

1 3 4
2
3
4

1 4 4
2
3
4

Observe that up to renaming the numbers, the fillings for
π3 can be divided into two classes, depending on whether
the last two numbers in the first row are equal. The four
fillings of the first class (with the last two numbers in
the first row equal) correspond to polynomials with 936
terms, whereas the six fillings of the second class corre-
spond to polynomials with 576 terms.

Denote by pi,j,k , 1 ≤ i, j ≤ 3 and 1 ≤ k ≤ 4, a basis
of A∗ ⊗B∗ ⊗ C∗ ∼= C 3 ⊗ C 3 ⊗ C 4 . Then define the swap
pi,j,k ↔ pi,j,l for fixed k, l and for all 1 ≤ i, j ≤ 3. Up to
sign, this swap takes the polynomial associated with the
filling

1 k k
2
3
4

to the polynomial associated with the filling

1 l l
2
3
4

and if m is different from k and l, the swap takes the
polynomial associated with the filling

1 k m
2
3
4

to the one associated with

1 l m
2
3
4

This additional symmetry could be useful for the
Bertini computation. However, our computation finished
without the need to implement this symmetry, so we did
not use it. We hope to exploit this for future work.

These fillings produce homogeneous polynomials that
are, moreover, homogeneous in multidegree. In general,

the multidegree of a monomial is a collection of vectors
[ [
lA1 , l

A
2 , l

A
3

]
,

[
lB1 , l

B
2 , l

B
3

]
,

[
lC1 , l

C
2 , l

C
3 , l

C
4

] ]
,

and is defined on a single variable xi,j,k by the rule that lAi ′
is 0 (respectively 1) for xi,j,k if i �= i′ (respectively i = i′);
lBj ′ and lCk ′ are defined similarly. The multidegree is then
defined for monomials by declaring it to be additive over
products of variables.

For example, the following is a sampling of terms in the
highest-weight polynomial corresponding to the filling

1 1 1
2
3
4

· · · − x321x113x211x221x134x332 − x321x122x
2
231x313x114

+ x211x312x131x121x334x223 + · · · ,
and one finds that this polynomial has multidegree[
[2, 2, 2], [2, 2, 2], [3, 1, 1, 1]

]
.

Remark 2.2. Note that when a = b = 3 and c = 4,
S2,2,2A

∗ ⊗ S2,2,2B
∗ ⊗ S3,1,1,1C

∗ is 10-dimensional. When
a = b = c = 4, the dimension of S2,2,2A

∗ ⊗ S2,2,2B
∗ ⊗

S3,1,1,1C
∗ increases to 1000. However, the basis of this

larger space can still be constructed from the two poly-
nomials that have 576 and 936 monomials via the type of
swap of variables described above for the index k in pijk ,
but also allowing similar swaps for each of the indices
i and j.

3. GEOMETRIC TECHNIQUES FOR SECANT
VARIETIES

Suppose A′ ⊂ A, B′ ⊂ B, and C ′ ⊂ C. Landsberg
and Manivel have shown how to take equations
on σr (PA′ × PB′ × PC ′) to equations on σr (PA×
PB × PC). They call this procedure inheritance
[Landsberg and Manivel 04, Proposition 4.4].

Subspace varieties contain tensors that can be written
using fewer variables. More specifically,

Suba ′,b ′,c ′(A⊗B ⊗ C)

:=
{
[T ] ∈ P (A⊗B ⊗ C) | ∃C a ′ ⊆ A,C b ′ ⊆ B,

C c ′ ⊆ C, with [T ] ∈ P (C a ′ ⊗ C b ′ ⊗ C c ′)
}
.

Landsberg and Weyman have shown that
Suba ′,b ′,c ′(A⊗B ⊗ C) is normal with rational sin-
gularities, and the ideal is generated by minors of
flattenings [Landsberg and Weyman 07, Theorem 3.1].
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Recall that a flattening of a 3-tensor in A⊗B ⊗ C

is the choice to view it as a matrix in A⊗ (B ⊗ C),
B ⊗ (A⊗ C) or (A⊗B) ⊗ C.

The subspace varieties are important in light of equa-
tions because of the fact that

Subr,r,r (A⊗B ⊗ C) ⊇ σr (PA× PB × PC),

and therefore when nontrivial, the ideal of Subr,r,r gives
equations of σr . There is an easy test for a module to
be in the ideal of a subspace variety, namely Sπ1A

∗ ⊗
Sπ2B

∗ ⊗ Sπ3C
∗ is in the ideal of Suba ′,b ′,c ′(A⊗B ⊗ C) if

and only if at least one of the following holds: #(π1) > a′,
#(π2) > b′, #(π3) > c′, where #(·) is the number of parts
of the partition.

Landsberg and Manivel made an important reduction
for the salmon problem, which we record here. Friedland
pointed out that their proof contained an error, which he
corrected in [Friedland 10]. Let a, b, c respectively denote
the dimensions of A,B,C.

Theorem 3.1. (Landsberg–Manivel, Friedland.) As sets,
for a, b, c ≥ 3, σ4

(
P a−1 × P b−1 × P c−1

)
is the zero-set of

the union of the following:

(i) Strassen’s commutation conditions,

M5 := S(3,1,1)A
∗ ⊗ S(2,1,1,1)B

∗ ⊗ S(2,1,1,1)C
∗

⊕ S(2,1,1,1)A
∗ ⊗ S(3,1,1)B

∗ ⊗ S(2,1,1,1)C
∗

⊕ S(2,1,1,1)A
∗ ⊗ S(2,1,1,1)B

∗ ⊗ S(3,1,1)C
∗,

(ii) equations inherited from σ4
(
P 2 × P 2 × P 3

)
,

(iii) modules in S5(A∗ ⊗B∗ ⊗ C∗) containing a
∧5 , i.e.,

equations for Sub4,4,4 .

Note that when a = b = c = 4, the third set of equa-
tions is trivial. The key point is that we will have a com-
plete description of the set-theoretic defining equations
of σ4(P 3 × P 3 × P 3) as soon as we have the equations of
σ4(P 2 × P 2 × P 3).

Remark 3.2. The equations in degree 5 as
well as equations in degree 9 inherited from
σ4

(
P 2 × P 2 × P 3

)
were found in [Strassen 83] and

were described in terms of certain commutation
conditions. See also [Landsberg and Manivel 04]
and [Allman and Rhodes 03]. Later,
[Landsberg and Manivel 08] reinterpreted these condi-
tions from the geometric and representation-theoretic
point of view and provided generalizations in this
language. These equations were further studied in
[Friedland 10]. In [Sturmfels 09], one finds a nice de-

scription of these equations requiring only basic linear
algebra. Analogous to our description of the equations
in degree 6, here we give the representation-theoretic
description of the polynomials of degree 5.

Note also that when a = b = c = 4, M5 is a 1728-
dimensional irreducible G-module, for

G = (GL(4) × GL(4) × GL(4)) � S3.

A natural basis of M5 can be constructed as in the pre-
vious section. For this we need to give the fillings and
source vectors for the triple of Young diagrams corre-
sponding to the partitions (3, 1, 1), (2, 1, 1, 1), (2, 1, 1, 1).
The fillings we chose for constructing the Young sym-
metrizer are

1 2 4
3
5

1 5
2
3
4

1 3
2
4
5

We note that up to permutation, there is just one
equivalence class for the source vectors for (2, 1, 1, 1) with
representative

1 1
2
3
4

There are three equivalence classes for the source vectors
for (3, 1, 1) with representatives

1 1 1
2
3

1 1 2
2
3

1 1 2
3
4

Therefore, to construct representatives for a basis of
S(2,1,1,1)A

∗ ⊗ S(2,1,1,1)B
∗ ⊗ S(3,1,1)C

∗, we fix the repre-
sentative filling for (2, 1, 1, 1) in both instances, and we let
the filling for (3, 1, 1) vary over the three representatives.
Thus we construct three polynomials, one for each rep-
resentative filling of the diagram for (3, 1, 1), and respec-
tively, these polynomials have 180, 360, and 540 monomi-
als. A basis of polynomials for one of the three isomorphic
modules in M5 is contained in the file deg 5 salmon.txt

with our ancillary materials. After these three polyno-
mials have been constructed, the rest of the polynomials
in the basis of M5 can be constructed by the substitu-
tions and swaps of variables as mentioned above (see the
discussion above Remark 2.2).

Another important result for the salmon prob-
lem is from Strassen, which has been reinter-
preted in representation-theoretic language in
[Landsberg and Manivel 08].
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Theorem 3.3. [Strassen 83] The ideal of the hypersurface
σ4(P 2 × P 2 × P 2) ⊂ P 26 is generated in degree 9 by a
nonzero vector in the 1-dimensional module

S(3,3,3)C
3 ⊗ S(3,3,3)C

3 ⊗ S(3,3,3)C
3 .

Let M9 denote the inherited module S(3,3,3)C 3 ⊗
S(3,3,3)C 3 ⊗ S(3,3,3)C 4 . Inheritance implies that M9 ∈
I(σ4(P 2 × P 2 × P 3)).

Remark 3.4. Suppose [T ] ∈ P (A⊗B ⊗ C), with
dim(A) = 3. Then write T = a1 ⊗ T1 + a2 ⊗ T2 + a3 ⊗
T3 , where the Ti are b× c matrices in B ⊗ C and the ai
are a basis of A.

Strassen described his equation in degree 9 as follows.
On an open set, one may assume that T1 is invertible.
Then consider the polynomial

det(T1)2 det(T2T
−1
1 T3 − T3T

−1
1 T2).

He showed that this polynomial is irreducible, of degree
9, and vanishes on σ4(PA× PB × PC).

A useful reformulation by Ottaviani of
Strassen’s equation is the following (see
[Landsberg and Ottaviani 10, Ottaviani 07]). As be-
fore, write T = a1 ⊗ T1 + a2 ⊗ T2 + a3 ⊗ T3 . Here one
does not require any of the slices T1 , T2 , T3 to be
invertible. Construct the block matrix

ψT =

⎛
⎜⎝

0 T3 −T2

−T3 0 T1

T2 −T1 0

⎞
⎟⎠ . ( 3–1)

One checks that ψT is linear in T , and that if [T ] ∈
Seg(PA× PB × PC), then rank(ψT ) = 2. Therefore, if
[T ] is a general point in σk (PA× PB × PC), it can be
written as the sum of k points on Seg(PA× PB × PC),
so rank(ψT ) ≤ 2k by the subadditivity of matrix rank. In
particular, in the case dim(A) = dim(B) = dim(C) = 3,
the 9 × 9 determinant det(ψT ) gives a nontrivial equation
for σ4(PA× PB × PC), which is also Strassen’s equa-
tion. This polynomial has 9216 monomials. Note that
ψT is not a skew-symmetric matrix unless the matrices
Ti are symmetric. Otherwise, any odd-sized determinant
would vanish identically.

Remark 3.5. In the case that a = b = 3 and c = 4, as a
vector space, M9 is isomorphic to S3C 4 , so dim(M9) =
20. When the highest-weight vector of a module has a
determinantal representation (as in the case of M9), it is
typically much faster to compute a basis of the module
from the highest-weight vector using lowering operators.
(Lowering operators are standard in the theory of Lie
algebras, but are not the focus of this work. We refer

the interested reader to [Oeding 08, Section 3.4] for an
explicit treatment of this method.) Using this method, we
found that the natural basis ofM9 consists of polynomials
with 9,216 or 25,488 or 43,668 monomials.

This basis is a 23-MB text file of polynomials, too large
to include with our ancillary files due to the restrictions
of arXiv, but may be obtained from either author. As in
Remarks 2.2 and 3.2, these polynomials can be associated
with representative polynomials, depending on fillings. In
the A- and B-factors, the diagram for (3, 3, 3) can have
only one semistandard filling, namely

1 1 1
2 2 2
3 3 3

In the C-factor, there are three classes of fillings, namely

1 1 1
2 2 2
3 3 3

1 1 1
2 2 2
3 3 4

1 1 1
2 2 3
3 4 4

These fillings yield the representative polynomials con-
sisting of 9,216 or 25,488 or 43,668 monomials respec-
tively. The rest of the polynomials in a basis of M9 can
be constructed by the substitutions and swaps described
in our treatment of M6 (see the discussion above Re-
mark 2.2).

Alternatively, a basis of M9 can be constructed via
Ottaviani’s formulation. It is derived from the condition
that the now 9 × 12 matrix appearing in (3–1) have rank
8 or less. However, the space of 9 × 9 minors of ψT is
no longer irreducible when a = b = 3 and c = 4. Namely,
the space of 9 × 9 minors of the 9 × 12 matrix ψT is the
following representation:

S3,3,3A
∗ ⊗ S3,3,3B

∗ ⊗ S3,3,3C
∗

⊕ S4,3,2A
∗ ⊗ S3,3,3B

∗ ⊗ S3,3,2,1C
∗

⊕ S5,2,2A
∗ ⊗ S3,3,3B

∗ ⊗ S3,2,2,2C
∗.

There are three equivalence classes of maximal minors
of ψT depending only on the column index I of the max-
imal minor of ∆I (ψT ). Let P = (P1 , P2 , P3) be the parti-
tion of the set {1, . . . , 12} into three sets P1 = {1, 2, 3, 4},
P2 = {5, 6, 7, 8}, P3 = {9, 10, 11, 12}. The representation
S3,3,3A

∗ ⊗ S3,3,3B
∗ ⊗ S3,3,3C

∗ is associated with the mi-
nors ∆I (ψT ) such that |I ∩ Pi | = 3 for i = 1, 2, 3. This
condition precisely forces the minor of ψT to be con-
structed with 3 × 3 submatrices of T1 , T2 , and T3 .

The representation S4,3,2A
∗ ⊗ S3,3,3B

∗ ⊗ S3,3,2,1C
∗ is

associated with the minors ∆I (ψT ) such that |I ∩ P1 | =
4, |I ∩ P2 | = 3, |I ∩ P3 | = 2.
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The representation S5,2,2A
∗ ⊗ S3,3,3B

∗ ⊗ S3,2,2,2C
∗ is

associated with the minors ∆I (ψT ) such that |I ∩ P1 | =
4, |I ∩ P2 | = 4, |I ∩ P3 | = 1.

Note that the symmetry implied by the fact that A
and B have the same dimension allows us to reverse the
roles of A and B to find two more modules in the ideal;
namely, the two modules S3,3,3A

∗ ⊗ S4,3,2B
∗ ⊗ S3,3,2,1C

∗

and S3,3,3A
∗ ⊗ S5,2,2B

∗ ⊗ S3,2,2,2C
∗ must also vanish on

σ4(PA× PB × PC).
While we have described five modules of degree-

9 equations that vanish on σ4(PA× PB × PC), we
use only the module M9 = S3,3,3A

∗ ⊗ S3,3,3B
∗ ⊗ S3,3,3C

∗

along withM6 described above for our set-theoretic defin-
ing equations. We can conclude that 〈M9〉 �⊂ 〈M6〉 by an-
alyzing the shapes of the partitions involved. More specif-
ically, in the C-factor the partition (3, 3, 3) has only three
parts, but if Sπ1A

∗ ⊗ Sπ2B
∗ ⊗ Sπ3C

∗ is a module in the
ideal generated by M6 , then π3 must have at least four
parts.

However, this argument fails for the other four degree-
9 modules, so it is possible that these equations are in the
ideal generated by M6 . Moreover, our set-theoretic result
implies that it must be the case that the other degree-9
modules are in the ideal generated by M6 (up to high
numerical accuracy).

Example 3.6. [Friedland 10] Friedland has shown that the
known equations in degree 9 are insufficient for defining
σ4(PA× PB × PC) set-theoretically when dim(A) ≥ 3,
dim(B) ≥ 3, and dim(C) ≥ 4. We thank J. M. Lands-
berg for the following clarification of Friedland’s example.
Consider the point

P = (a1 ⊗ b1 + a2 ⊗ b2) ⊗ c1 + (a1 ⊗ b1 + a2 ⊗ b3) ⊗ c2

+ (a1 ⊗ b1 + a3 ⊗ b2) ⊗ c3

+ (a1 ⊗ b1 + a3 ⊗ b3) ⊗ c4 .

The span of {a1 , a2 , a3} ⊂ A and the span of
{b1 , b2 , b3} ⊂ B are both no more than 3-dimensional,
so P is a zero of M5 , since the representations Sπ1A

∗ ⊗
Sπ2B

∗ ⊗ Sπ3C
∗ in M5 each have either |π1 | = 4 or |π2 | =

4, and therefore the respective Schur functor Sπi with
|πi | = 4 will annihilate a 3-dimensional subspace.

One finds that ψT (P ) has rank 8, and therefore P is a
zero of M9 . However, P is not a point of σ4(PA× PB ×
PC). This geometric argument implies that more polyno-
mials are needed than just the degree-5 and -9 equations.
For this, Friedland produces equations of degree 16 that
do not vanish on P .

On the other hand, P is not in the zero set of M6 , so
M6 is sufficient to rule out the possibility of points of the
same form as P to have border rank 4.

Therefore, one could repeat Friedland’s proof, mod-
ifying the argument where he uses degree-16 equations
with these degree-6 equations and thus obtain a new re-
sult, and a computer-free proof of Theorem 3.10.

Remark 3.7. To construct a basis of the 8000-dimensional
space S(3,3,3)C 4 ⊗ S(3,3,3)C 4 ⊗ S(3,3,3)C 4 , one can repeat
the lowering operator procedure. Since these polyno-
mials are very complicated, our experience is that in
practice, one should use the degree-9 equations in their
determinantal form. In particular, to check whether a
point z vanishes on all of the polynomials in S(3,3,3)C 4 ⊗
S(3,3,3)C 4 ⊗ S(3,3,3)C 4 , it is more efficient first to con-
struct the matrix in (3–1) for the point z and check that
the determinant vanishes. Then repeat this test for all
allowable changes of coordinates.

In other words, for every g ∈ GL(4) × GL(4) × GL(4),
construct the matrix in (3–1) for g · z and check that the
determinant still vanishes. (This is sufficient because our
module is the span of the orbit of a single polynomial.)
Moreover, if one wants only a quick check that z is in the
zero-set with high probability, it suffices to check that
g · z is in the zero-set for a random g. In this quick test,
a nonvanishing result is certain, but vanishing must be
reverified with an exact (nonrandomized) test.

Since (2, 2, 2) has three parts, and (3, 1, 1, 1) has
four parts, M6 must vanish on the subspace varieties
Sub2,3,4 ∪Sub3,2,4 ∪Sub3,3,3 . Also, note that two of these
subspace varieties are already contained in the secant
variety, namely σ4

(
P 2 × P 2 × P 3

) ⊃ Sub2,3,4 ∪Sub3,2,4 .
Indeed, if x ∈ Sub2,3,4 , then there exists A′ ⊂ A such that
dim(A′) = 2 and x ∈ P (A′ ⊗B ⊗ C). But in this case,

P (A′ ⊗B ⊗ C) = σ4(PA′ × PB × PC)
⊂ σ4(PA× PB × PC).

The same argument is repeated for Sub3,2,4 .
If M is a set of polynomials, let V(M) denote the zero-

set of M . Based on the above evidence, we make the
following conjecture:

Conjecture 3.8. As sets,

V(S(2,2,2)C
3 ⊗ S(2,2,2)C

3 ⊗ S(3,1,1,1)C
4)

= σ4
(
P 2 × P 2 × P 3) ∪ Sub3,3,3 .

Computation 4.1 below verifies that Conjecture 3.8 is
true up to high numerical accuracy.

Theorem 3.9. (Corollary to Computation 4.1.) Let A ∼=
C 3 , B ∼= C 3 , C ∼= C 4 . Up to high numerical accuracy,
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the secant variety σ4 (PA× PB × PC) is defined set-
theoretically by

M6 = S(2,2,2)A
∗ ⊗ S(2,2,2)B

∗ ⊗ S(3,1,1,1)C
∗,

M9 = S(3,3,3)A
∗ ⊗ S(3,3,3)B

∗ ⊗ S(3,3,3)C
∗.

Proof. By Proposition 2.1 and by Strassen’s theo-
rem (Theorem 3.3) combined with inheritance, we
know that both M6 and M9 are in the ideal of
σ4 (PA∗ × PB∗ × PC∗). So we know that

σ4 (PA× PB × PC) ⊂ V(M6 ⊕M9).

For the other inclusion, select a point z in the common
zero locus of M6 and M9 . Since z ∈ V(M6), Conjecture
3.8 says that either z is on the secant variety, in which
case we are done, or z is on the subspace variety. In the
latter case, let C ′ ⊂ C be a 3-dimensional vector space
such that z ∈ P (A⊗B ⊗ C ′). Then z is a zero of M9 =
S(3,3,3)A

∗ ⊗ S(3,3,3)B
∗ ⊗ S(3,3,3)C

∗, and therefore is also
a zero of the polynomials in the restriction S(3,3,3)A

∗ ⊗
S(3,3,3)B

∗ ⊗ S(3,3,3)C
′∗. So by Strassen’s theorem,

z ∈ σ4(PA× PB × PC ′) ∼= σ4(P 2 × P 2 × P 2).

We are finished, because we have the obvious inclusion

σ4(PA× PB × PC ′) ⊂ σ4(PA× PB × PC).

We used numerical algebraic geometry, specifically
Bertini, to compute the decomposition of the zero-set
V(M6) into irreducible varieties. We outline this compu-
tation in the next section. However, if one were to prove
Conjecture 3.8, then the qualifier “with high numerical
accuracy” could be removed from the statement of The-
orem 3.9.

Recall that the Landsberg–Manivel–Friedland theo-
rem cited above, Theorem 3.1, said that set-theoretic
defining equations of σ4

(
P a−1 × P b−1 × P c−1

)
with

a, b, c ≥ 3 will be known as soon as set-theoretic defin-
ing equations of σ4

(
P 2 × P 2 × P 3

)
are known, and this

is the content of Theorem 3.9. Therefore, we can restate
the immediate consequence of combining Theorem 3.1
with our computations.

Theorem 3.10. As sets, for a, b, c ≥ 3, up to high numer-
ical accuracy, σ4

(
P a−1 × P b−1 × P c−1

)
is the zero-set of

the following:

(i) Strassen’s commutation conditions,

M5 := S(3,1,1)A
∗ ⊗ S(2,1,1,1)B

∗ ⊗ S(2,1,1,1)C
∗

⊕ S(2,1,1,1)A
∗ ⊗ S(3,1,1)B

∗ ⊗ S(2,1,1,1)C
∗

⊕ S(2,1,1,1)A
∗ ⊗ S(2,1,1,1)B

∗ ⊗ S(3,1,1)C
∗,

(ii) equations inherited from σ4
(
P 2 × P 2 × P 3

)
,

M6 = S(2,2,2)A
∗ ⊗ S(2,2,2)B

∗ ⊗ S(3,1,1,1)C
∗,

M9 = S(3,3,3)A
∗ ⊗ S(3,3,3)B

∗ ⊗ S(3,3,3)C
∗,

(iii) modules in S5(A∗ ⊗B∗ ⊗ C∗) containing a
∧5 , i.e.,

equations for Sub4,4,4 .

Remark 3.11. As mentioned in the introduction, the qual-
ifier “up to high numerical accuracy” can be removed
if one uses Friedland’s argument [Friedland 10] modified
by our computations, as mentioned in Example 3.6. See
[Friedland and Gross 11].

4. RESULTS USING NUMERICAL ALGEBRAIC
GEOMETRY

In this section, we provide a brief overview of the basic
methods of numerical algebraic geometry; references for
further details are provided. We then describe the results
of the run establishing the main result of this article and
conclude with a short discussion regarding the reliability
of numerical algebraic geometry methods and, more to
the point, the reliability of this result.

4.1. Brief Overview of Numerical Algebraic Geometry
Methods

Given generators of an ideal of C [x1 , . . . , xN ], the meth-
ods of numerical algebraic geometry will produce a nu-
merical irreducible decomposition for the associated vari-
ety X ⊂ CN . In particular, for each irreducible compo-
nent Z of X, these methods will produce degZ numeri-
cal approximations (to any number of digits) of generic
points on Z. The end result is a catalog of all irreducible
components of X, each indicated by a set of witness
points on the component (together referred to as a wit-
ness set for the component), its dimension, and its degree.

The core method of numerical algebraic geometry is
homotopy continuation, a method for approximating the
complex zero-dimensional solution set of a polynomial
system. The basic idea of homotopy continuation is to
cast the given polynomial system F as a member of a pa-
rameterized family of polynomial systems, one of which,
G, has known solutions or is otherwise easily solved. If



Bates and Oeding: Toward a Salmon Conjecture 367

done correctly, the solutions of G will vary continuously
to those of F as the parameters are varied appropriately.
By tracking these paths numerically (using predictor–
corrector methods), one will arrive at numerical approx-
imations of all complex zero-dimensional solutions of F .
There have been many technical advances in this area
that contribute heavily to the reliability of these meth-
ods. See [Sommese and Wampler 05, Li 03] for general
references and [Bates et al. 08, Bates et al. 09] regarding
the use of adaptive precision methods for added reliabil-
ity.

Pairing homotopy continuation with the use of hy-
perplane sections, monodromy, and a few other meth-
ods described fully in [Sommese and Wampler 05] yields
the numerical irreducible decomposition. Briefly, a d-
dimensional irreducible algebraic set in CN will intersect
a generic codimension-d linear space in a set of points.
This statement about genericity (along with similar as-
sumptions of genericity throughout numerical algebraic
geometry) is the reason for referring to these methods as
probability-one methods, as described further below.

The computation of a numerical irreducible decom-
position begins by searching for codimension-one irre-
ducible components (by adding N − 1 linear polynomials
to the set of generators and solving for zero-dimensional
components via homotopy continuation), followed by
codimension-two components, and so on. Once this sweep
through all possible dimensions has been completed, we
have a superset of the desired numerical irreducible de-
composition, since a linear variety of codimension d will
intersect any component of dimension d or higher.

Sommese, Verschelde, and Wampler (and others)
have developed methods for removing points in the
“wrong dimension,” i.e., those discovered while search-
ing for components in dimension d that actually lie on
higher-dimensional components, called junk points. They
have also developed algorithms for performing pure-
dimensional decompositions to yield witness sets on each
irreducible component (instead of the initially found wit-
ness sets for the union of all equidimensional irreducible
components). See [Sommese and Wampler 05] for further
details.

There are three main software packages in this field:
Bertini [Bates et al. 10b], HOM4PS-2.0 [Lee et al. 10],
and PHCpack [Verschelde 10]. Each package has vari-
ous advantages over the others [Bates et al. 10a]. Since
Bertini is typically the most efficient package for large
parallel positive-dimensional problems as well as the
package with the most reliability and precision features,
we used Bertini in our computations for this article. In

fairness, it should also be noted that Bates is a Bertini
developer.

4.2. Numerical Results for the Salmon Problem

Computation 4.1. Up to ten digits of accuracy, the zero-
set of the ten polynomials in a basis ofM6 (defined above)
has precisely two irreducible components. One, in dimen-
sion 31, has degree 345. The other, in dimension 29, has
degree 84.

Indeed, σ4
(
P 2 × P 2 × P 3

)
is nondefective and has

dimension 31 [Abo et al. 09, Theorem 4.6]. It is also
straightforward to check that Sub3,3,3 has dimension 29,
and by the pigeonhole principle, these must be our com-
ponents in the zero-set of M6 . Though these dimensions
are sufficient information to identify our varieties, as ad-
ditional information we find that this secant variety has
degree 345 and the subspace variety has degree 84. The
degrees of subspace varieties are well known in general.
However, we were unable to find a previous result about
the degree of this secant variety.

Proof. The conclusion comes from the results of a cal-
culation in Bertini using approximately two weeks of
computing time on eight processors, using tight controls
including small tracking and final tolerances (10−10 or
smaller), adaptive precision numerical methods, and a
variety of checks and error controls built into Bertini
(such as checking at t = 0.1 that no paths have crossed).
The output of our computation is included in the files
main data.txt and screen out.txt, which may be ob-
tained with the other ancillary materials as mentioned
above.

Remark 4.2. After the submission of the first draft
of this paper, Friedland provided a counterexample to
[Landsberg and Manivel 08, Proposition 5.4], thus inval-
idating the proof of [Landsberg and Manivel 08, Corol-
lary 5.6]. Because we quote this result in the present
paper, we tried to use numerical methods to find out
what could be true. In particular, we tried to find a cor-
rected statement for [Landsberg and Manivel 08, Propo-
sition 5.4] by computing the zero-set of S(3,1,1)A

∗ ⊗
S(2,1,1,1)B

∗ ⊗ S(2,1,1,1)C
∗ using Bertini. This proved to be

a very expensive computation. This module, in its small-
est form, has a basis of 96 degree-5 polynomials in 48
variables (see the file deg 5 salmon.txt in our ancillary
files).

After one month of computational time on 72
processors, we had only completed the first 10
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codimensions, tracking up to two million paths for each
codimension. An easy geometric argument implies that
the smallest possible component has projective dimen-
sion 8, indicating that we were very far from complet-
ing the computation. In the meantime, a second version
of [Friedland 10] appeared, with a corrected proof for
[Landsberg and Manivel 08, Corollary 5.6]. Due to lim-
ited computational resources and time, we decided to
abandon further computation and accept the computer-
free proof of [Landsberg and Manivel 08, Corollary 5.6]
in [Friedland 10].

4.3. Reliability of this Result

Can Computation 4.1 be accepted as absolute proof? No,
unfortunately, it may not. However, this numerical com-
putation gives extremely strong evidence that Compu-
tation 4.1 is indeed true even without the phrase “with
high numerical accuracy.”

There are two types of approximations that are used in
order to compute the numerical decomposition of a zero-
set. One is the choice of a set of random hyperplanes that
cut the space and allow one to look for zero-dimensional
solutions to a set of equations. The other type of approx-
imation is the numerical homotopy continuation method,
which actually searches for the zero-dimensional solu-
tions.

The choice of random hyperplanes amounts to the
choice of random numbers from a Zariski-open dense set
S of some parameter space rather than choosing some
set of points in the complement of S. Since the comple-
ment of S is an algebraic set, we know that it must have
positive codimension, making it a set of measure zero for
any reasonable choice of measure. Thus, the set of hy-
perplanes that fail in that they would cause us to miss
a component in the zero-set has measure zero, and we
say that the choice of hyperplanes will yield the correct
result with probability one.

The second type of approximation that is done in this
type of computation is the heart of Bertini and is thor-
oughly described in [Sommese and Wampler 05]. Bertini
allows one to set desired accuracy to arbitrary levels, and
any computational errors (such as path crossing) are re-
ported. Further, Bertini has additional features, such as
adaptive-precision path-tracking, that increase security
[Bates et al. 08, Bates et al. 09].

The run for this article used a special
equation-by-equation algorithm called regeneration
[Hauenstein et al. 11]. The run required the following of
more than 200,000 paths, and there were no path failures

and no crossed paths detected. In addition, there were
no errors in the monodromy or trace test procedures.
The numerical output of our run is contained in the files
main data.txt and screen out.txt with our ancillary
materials.

We cannot conclude with unquestionable certainty
that Computation 4.1 holds unconditionally, but we can
state with an extremely high level of confidence that it is
correct. Motivated by this result, we hope to find a direct
argument to prove Conjecture 3.8.

4.4. Numerical versus Symbolic Computation

Finally, one might wonder why we chose to use numeri-
cal methods to test this conjecture rather than symbolic
methods that will provide certainty. The main reasons
are simple: time and space. Regarding time, we expect
that without additional ideas to reduce the difficulty of
computation, a related calculation using symbolic meth-
ods should take at least eight times as long as the calcu-
lation in Bertini, because Gröbner-basis algorithms are
not completely parallelizable (but for an example of re-
cent progress on this front see [Kredel 09]). In fact, based
on the timings from an ongoing benchmarking project be-
tween the Bertini and Singular [Decker et al. 10] develop-
ment teams, we suspect that any symbolic computation
will actually take far more than eight times as long.

Regarding the issue of space, we must consider data
storage at intermediate stages. While the initial input
and final result may be relatively small, Gröbner-basis al-
gorithms typically must store large intermediate results
for subsequent calculations. On the other hand, homo-
topy continuation algorithms require a trivial amount of
extra data in intermediate stages. Indeed, the amount
of memory used grows linearly with the number of paths
tracked (simply because the final point on each path must
be stored). Bertini is thus much less likely to fail due to
memory constraints.

Finally, one could also hope for a (symbolic) certificate
of the validity of results obtained by numerical methods.
At the EACA School in Tenerife, Spain, Wolfram Decker
told us that the development of such certificates is among
the current goals of the Singular team, and we hope to
be able to use this feature in future work.
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