Open Access
Translator Disclaimer
2011 Convergence to Attractors Under Perturbations
Simeon Reich , Alexander J. Zaslavski
Commun. Math. Anal. 10(1): 57-63 (2011).

Abstract

We show that if for any initial point there exists a trajectory of a nonexpansive set-valued mapping attracted by a given set, then this property is stable under small perturbations of the mapping.

Citation

Download Citation

Simeon Reich . Alexander J. Zaslavski . "Convergence to Attractors Under Perturbations." Commun. Math. Anal. 10 (1) 57 - 63, 2011.

Information

Published: 2011
First available in Project Euclid: 19 May 2011

zbMATH: 1235.54052
MathSciNet: MR2825953

Subjects:
Primary: 47H04
Secondary: 47H09 , 47H10 , 54E35

Keywords: attractor , Hausdorff distance , metric space , nonexpansive set-valued mapping , trajectory

Rights: Copyright © 2011 Mathematical Research Publishers

JOURNAL ARTICLE
7 PAGES


SHARE
Vol.10 • No. 1 • 2011
Back to Top