Open Access
december 2019 On Bernstein-Chlodovsky operators preserving $e^{-2x} $
Tuncer Acar, Mirella Cappelletti Montano, Pedro Garrancho, Vita Leonessa
Bull. Belg. Math. Soc. Simon Stevin 26(5): 681-698 (december 2019). DOI: 10.36045/bbms/1579402817

Abstract

In this paper we introduce a generalization of Bernstein-Chlodovsky operators that preserves the exponential function $e^{-2x}$ $(x \geq 0)$. We study its approximation properties in several function spaces, and we evaluate the rate of convergence by means of suitable moduli of continuity. Throughout some estimates of the rate of convergence, we prove better error estimation than the original operators on certain intervals.

Citation

Download Citation

Tuncer Acar. Mirella Cappelletti Montano. Pedro Garrancho. Vita Leonessa. "On Bernstein-Chlodovsky operators preserving $e^{-2x} $." Bull. Belg. Math. Soc. Simon Stevin 26 (5) 681 - 698, december 2019. https://doi.org/10.36045/bbms/1579402817

Information

Published: december 2019
First available in Project Euclid: 19 January 2020

zbMATH: 07167751
MathSciNet: MR4053848
Digital Object Identifier: 10.36045/bbms/1579402817

Subjects:
Primary: 41A25 , 41A36

Keywords: Bernstein-Chlodovsky operators , exponential functions , ‎positive operators , rate of convergence

Rights: Copyright © 2019 The Belgian Mathematical Society

Vol.26 • No. 5 • december 2019
Back to Top