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Abstract

In this paper we introduce a generalization of Bernstein-Chlodovsky op-
erators that preserves the exponential function e−2x (x ≥ 0). We study its
approximation properties in several function spaces, and we evaluate the
rate of convergence by means of suitable moduli of continuity. Throughout
some estimates of the rate of convergence, we prove better error estimation
than the original operators on certain intervals.

1 Introduction

In 1912 S.N. Bernstein proposed the first constructive proof of the very well
known Weierstrass theorem, furnishing an explicit example of a sequence of poly-
nomials that approximates strongly every continuous functions f on a compact
interval [a, b]. Without loss of generality we can think of [a, b] = [0, 1]. For every
bounded function f on [0, 1], n ≥ 1 and 0 ≤ x ≤ 1, such polynomials are defined
as

Bn( f )(x) =
n

∑
k=0

(

n

k

)

xk(1 − x)n−k f

(

k

n

)

,

and they are known as Bernstein polynomials on [0, 1] (see, e.g., [29, Chapter 1]).
We point out that the Bn’s fix the constants and the function x.
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In order to approximate functions defined on unbounded intervals, in [18]
Chlodovsky introduced and studied the following Bernstein-type operators

Bn,hn
( f )(x) =

n

∑
k=0

f

(

hnk

n

)(

n

k

)(

x

hn

)k (

1 − x

hn

)n−k

(n ≥ 1, x ≥ 0, f belonging to a suitable space), (hn)n≥1 being a sequence of
strictly positive real numbers such that limn→∞ hn = +∞. Chlodovsky dealt with
several questions related to the sequence (Bn,hn

)n≥1: pointwise convergence, uni-
form convergence, behavior on discontinuous functions, simultaneous approxi-
mation, and approximation properties for complex functions (see also
[29, pp. 36–37]).

It is worth noticing that, while the Bn,hn
’s are not positive operators, many

authors have dealt with a positive modification of theirs, that for an abuse of no-
tation we continue to denote by Bn,hn

and to call Bernstein-Chlodovsky operators,
defined as

Bn,hn
( f )(x) =



















n

∑
k=0

f

(

hnk

n

)(

n

k

)(

x

hn

)k (

1 − x

hn

)n−k

if 0 ≤ x ≤ hn ,

f (x) if x > hn

(1.1)

(see, e.g., [9, 13]). Further results can be found in [19, 20]. For more recent
developments on Bernstein-Chlodovsky operators and their variants, we refer
the reader for instance to [1, 2, 26, 27]; moreover, in [17] a relation between
Bernstein-Chlodovsky operators and Szász-Mirakyan operators can be found.

In this paper we are interested in a particular modification of the operators
(1.1) that allows to reproduce constants and the exponential function e−2x

(x ≥ 0). This kind of investigations fall into a research area which finds its roots
in the pioneering work of King [28], where the classical Bernstein operators were
modified in order to fix the function x2, instead of the function x, getting in this
way better error estimation than the Bn’s on [0, 1

3 ].
Subsequently, King’s idea has been successfully applied to several well known

sequences of operators. In particular, a modification of the Bernstein-Chlodovsky
operators preserving x2 has been considered by Agratini in [7].

For a survey on the so-called King-type operators see [5]. Here we limit our-
selves to recall what has been done in the case of King’s type operators preserving
exponential functions, which is a more recent development in this research area,
as the considerable number of works on this topic appeared in the last couple of
years shows.

In [6] the first case of positive linear operators fixing ex, namely Bernstein-
type operators, was treated. Another kind of exponential function is reproduced
by the Bernstein-type operators studied by Birou in [14].

A systematic study on King-type operators preserving exponential functions
has been done in [3] (see, also, [4]), where Acar, Aral, and Gonska defined Szász-
Mirakyan operators preserving constants and e2ax, a > 0. Later, other well known
linear positive operators have been modified in order to fix constants and
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eax, a > 0 ([15, 32]), constants and e−x ([21, 22, 24]), constants and e−2x ([21, 23]),
constants and eAx with A ∈ R ([24]), eax and e2ax, a > 0 ([11, 12, 30]).

In the present paper we introduce a sequence of Bernstein-Chlodovsky-type
operators that fix constants and e−2x. We deal with their approximation prop-
erties both in spaces of continuous functions and in some weighted functions
spaces. Moreover, throughout some estimates of the rate of convergence, we are
able to prove better error estimation than the original operators on certain inter-
vals.

The paper is organized as follows. After some preliminaries, in Section 3
we define the Bernstein-Chlodovsky operators reproducing the function e−2x.
In Section 4 we study their approximation properties in several spaces of con-
tinuous functions, also providing some estimates of the rate of convergence by
means of suitable moduli of smoothness. In the last section, we pass to investi-
gate the behavior of our operators in polynomial weighted functions spaces, pre-
senting also in this case estimates of the rate of convergence. The results proved
are compared with previous ones present in the literature.

2 Preliminaries

In what follows, we shall denote by C([0,+∞[) the space of all continuous real
valued functions on [0,+∞[. Cb([0,+∞[) is the space consisting of all functions
in C([0,+∞[) which are also bounded. Cb([0,+∞[), endowed with the sup-norm
‖ · ‖∞ and the natural pointwise ordering, is a Banach lattice. Moreover, we
shall use the symbols C∗([0,+∞[) and C0([0,+∞[) for the Banach sublattices of
Cb([0,+∞[) defined, respectively, as

C∗([0,+∞[) = { f ∈ C([0,+∞[) : ∃ lim
x→+∞

f (x) ∈ R} ,

and
C0([0,+∞[) = { f ∈ C∗([0,+∞[) : lim

x→+∞
f (x) = 0} .

Further, given the weight function

wm(x) =
1

1 + xm
(m ≥ 1, x ≥ 0), (2.1)

we consider the space

Em := { f ∈ C([0,+∞[) : sup
x≥0

wm(x)| f (x)| ∈ R},

endowed with the norm

‖ f‖m := sup
x≥0

wm(x)| f (x)| ( f ∈ Em),

and its natural subspaces

E∗
m = { f ∈ Em : ∃ lim

x→+∞
wm(x) f (x) ∈ R}
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and
E0

m = { f ∈ Em : lim
x→+∞

wm(x) f (x) = 0} .

Note that, by the Stone-Weierstrass theorem, C0([0,+∞[) is dense in E0
m.

Throughout this paper, we use the symbol ei for the power functions ei(t) = ti

(t ≥ 0, i ∈ N), and fλ (λ > 0) for the exponential function

fλ(x) = e−λx (x ≥ 0). (2.2)

The purpose of this paper is to introduce a new sequence of positive
linear operators on C([0,+∞[), which generalize Bernstein-Chlodovsky opera-
tors; we recall that, for any n ≥ 1, the n-th Bernstein-Chlodovsky operator is
defined by (1.1) and (hn)n≥1 is sequence of strictly positive real numbers satisfy-
ing limn→∞ hn = +∞.

Every Bn,hn
is linear, positive, and maps C∗([0,+∞[), C0([0,+∞[) and Em into

themselves.
In particular, for every n ≥ 1,

Bn,hn
(e0) = e0 Bn,hn

(e1) = e1; (2.3)

moreover, if x ≤ hn,

Bn,hn
(e2)(x) = x2 − 1

n
x2 +

hn

n
x . (2.4)

More generally (see [18], pp. 391-392), for every n ≥ 1 and x ≤ hn, if m ≤ n,

Bn,hn
(em)(x) =

m−1

∑
k=0

ak,m

(

hn

n

)k [n]m−k

nm−k
xm−k

=
[n]m
nm

xm +
hn

n
Fm−1(x)

(2.5)

where, for s ≥ 1, [z]s := z(z − 1) · · · (z − s + 1), [z]0 := 1 (z ∈ R) is the falling
difference polynomial, ak,m are suitable positive numbers and Fm−1 is the polyno-
mial of degree m − 1

Fm−1(x) :=
m−1

∑
k=1

ak,m

(

hn

n

)k−1 [n]m−k

nm−k
xm−k . (2.6)

In particular, if we consider the function defined, for every x ≥ 0, as

ψx = e1 − xe0, (2.7)

then, for every 0 ≤ x ≤ hn,

Bn,hn
(ψx)(x) = 0 and Bn,hn

(ψ2
x)(x) =

hn

n
x − 1

n
x2. (2.8)

Finally, for the exponential functions fλ (see (2.2)), if n ≥ 1 and x ≤ hn, one
has

Bn,hn
( fλ)(x) =

(

1 − x

(

1 − e−(λhn)/n

hn

))n

. (2.9)
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Under the additional hypothesis

lim
n→∞

hn

n
= 0, (2.10)

it is well known that, for every f ∈ C∗([0,+∞[),

lim
n→∞

Bn,hn
( f ) = f uniformly on [0,+∞[ .

On the other hand (see [13]), under the assumption (2.10) it also follows that,
for every f ∈ E0

m with m > 2,

lim
n→∞

Bn,hn
( f ) = f in E0

m .

3 Bernstein-Chlodovsky operators preserving e−2x

In this section we introduce a generalization of operators (1.1) that preserve the
function f2.

To this end, we determine a sequence (rn)n≥1 of real functions such that, for
every n ≥ 1, the operators

B∗
n(·) = Bn,hn

(·) ◦ rn(x) on [0, hn] (3.1)

have the function f2 as a fixed point. For that to happen, taking (2.9) into
account, we need that, for rn(x) ≤ hn,

e−2x =

(

1 − rn(x)

(

1 − e−(2hn)/n

hn

))n

,

that is

rn(x) = hn
1 − e−(2x)/n

1 − e−(2hn)/n
. (3.2)

Observe that, for every n ≥ 1, thanks to the well known inequality 1 − e−x ≤ x
(x ≥ 0),

rn(0) = 0, 0 < rn(x) ≤ Mnx for every x > 0 , (3.3)

where

Mn :=
2hn

n(1 − e−(2hn)/n)
(n ≥ 1) . (3.4)

Moreover, Mn ≥ 1 (n ≥ 1) and, under assumption (2.10), Mn → 1 as n → ∞.
We also point out that rn(x) ≤ hn if and only if x ≤ hn, so that the sequence

(B∗
n)n≥1 turns into

B∗
n( f )(x) =



























n

∑
k=0

f

(

hnk

n

)(

n

k

)

(

1 − e−(2x)/n

1 − e−(2hn)/n

)k (

1 − 1 − e−(2x)/n

1 − e−(2hn)/n

)n−k

if 0 ≤ x ≤ hn

f (x) if x > hn ,
(3.5)
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for every n ≥ 1, f ∈ C∗([0,+∞[) and x ≥ 0.
From (2.3), (2.4) and (2.5), we have that B∗

n(e0) = e0 and, for x ≤ hn,

B∗
n(e1)(x) = rn(x), B∗

n(e2)(x) =
n − 1

n
r2

n(x) +
hn

n
rn(x); (3.6)

more generally, for every n ≥ 1 and x ≤ hn, if m ≤ n,

B∗
n(em)(x) =

[n]m
nm

rn(x)
m +

hn

n
Fm−1(rn(x)) (3.7)

where Fm−1is defined as in (2.6).
Also (see (2.7)), for any n ≥ 1 and x ∈ [0, hn],

B∗
n(ψx)(x) = rn(x)− x (3.8)

and

B∗
n(ψ

2
x)(x) =

n − 1

n
r2

n(x) +
hn

n
rn(x)− 2xrn(x) + x2. (3.9)

Finally, thanks to (2.9), for every λ > 0 and x ≤ hn,

B∗
n( fλ)(x) =

(

1 − rn(x)

(

1 − e−(λhn)/n

hn

))n

=

(

1 − (1 − e−(2x)/n)(1 − e−(λhn)/n)

1 − e−(2hn)/n

)n

.

(3.10)

Before illustrating the approximation properties of the sequence (B∗
n)n≥1, we

list some further properties of the generating functions rn.

Proposition 3.1. For every n ≥ 1,

rn(x) ≥ x for any x ∈ [0, hn]. (3.11)

Moreover, suppose that the sequence (hn)n≥1 satisfies (2.10). Then

lim
n→∞

rn = e1 uniformly on compact subintervals of [0,+∞[ .

Proof. Fix n ≥ 1. We first note that rn is a concave increasing function in [0, hn], as
it is the function − f2/n. Since rn(0) = 0 and rn(hn) = hn, we have that, for every
x ∈ [0, hn], rn(x) ≥ x, hence (3.11) holds true.

It is easy to check that limn→∞ rn = e1 pointwise on [0,+∞[. Since each rn is
concave (and hence −rn is convex) the convergence is indeed uniform on every
compact interval of [0,+∞[.

Remark 3.2. By applying (3.3) to (3.7), for every n ≥ 1 and x ≤ hn,

B∗
n(em)(x) ≤ Mm

n xm + cn,m−1(x) if m ≤ n ,

with Mn as in (3.4) and cn,m−1(x) := ∑
m−1
k=1 ak,mMm−k

n

(

hn
n

)k
xm−k ; hence, if we

now consider the weight wm for m ≥ 2 (see (2.1)),

wm(x)B
∗
n(em)(x) ≤ wm(x)Mm

n xm + wm(x)cn,m−1(x) ≤ wm(x)Mm
n xm + Cn,m−1

(3.12)
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where Cn,0 := 0 and, for m > 1,

Cn,m−1 := max
x≥0

wm(x)cn,m−1(x) ≤
m−1

∑
k=1

ak,mMm−k
n

(

hn

n

)k

. (3.13)

Observe that, under the assumption (2.10), Cn,m−1 → 0 as n → ∞; hence,

lim
n→∞

‖B∗
n(em)− em‖m = 0 . (3.14)

4 Uniform strongly approximation by the B∗
n’s

In this section we deal with some approximation properties of the sequence (B∗
n)n≥1

in several spaces of continuous functions. We provide also estimates of the rate
of convergence.

Theorem 4.1. Consider the operators B∗
n (n ≥ 1) defined by (3.5). Then, for a fixed

n ≥ 1,

(i) B∗
n is a positive linear operator from C∗([0,+∞[) into itself; moreover,

‖B∗
n‖C∗([0,+∞[) = 1.

(ii) B∗
n(C0([0,+∞[)) ⊂ C0([0,+∞[).

Proof. (i) Fix n ≥ 1. The positivity of the B∗
n’s is easily verified on account of

(3.1) and (3.3). Moreover, if f ∈ C∗([0,+∞[), as quoted after (1.1), Bn,hn
( f ) ∈

C∗([0,+∞[), hence in particular Bn,hn
( f ) ∈ C([0,+∞[). Then, observing that the

function rn is continuous and rn(hn) = hn, from (3.1) it follows that
B∗

n( f ) ∈ C([0,+∞[) and, from (3.5), limx→+∞ B∗
n( f )(x) = limx→+∞ f (x) ∈ R.

Finally, ‖B∗
n‖C∗([0,+∞[) = ‖B∗

n(e0)‖∞ = 1, thanks to the positivity of each B∗
n.

(ii) It is an easy consequence of (i) and the fact that limx→+∞ B∗
n( f )(x) =

limx→+∞ f (x) = 0 whenever f ∈ C0([0,+∞[).

Theorem 4.2. Let (B∗
n)n≥1 be the sequence of operators defined by (3.5) under assump-

tion (2.10). The following statements hold true:

(i) If f ∈ C∗([0,+∞[), then lim
n→+∞

B∗
n( f ) = f uniformly on [0,+∞[.

(ii) If f ∈ Cb([0,+∞[), then lim
n→+∞

B∗
n( f ) = f uniformly on compacts subsets of

[0,+∞[.

Proof. In order to prove statement (i), we show that, for every λ > 0,

lim
n→∞

B∗
n( fλ) = fλ uniformly on [0,+∞[ (4.1)

(see (2.2)).
Indeed, we recall that (see [25, Lemma 3.1]), for every t > 0 and n ≥ 1,

e−tαn − e−t
<

tn

2e
, (4.2)
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where αn = 1−e−tn

tn
, and (tn)n≥1 is a sequence of strictly positive real numbers.

Following the same arguments in the proof of Corollary 3.4 in [25], we have
that, for every n ≥ 1 and x ∈ [0, hn],

|B∗
n( fλ)(x)− e−λx| ≤ e−λrn(x)

1−e−λhn/n

λhn/n − e−λx ≤ e−λrn(x)
1−e−λhn/n

λhn/n − e−λrn(x),

where the last inequality holds true by means of (3.11).
Hence, by applying (4.2) for t = λrn(x) and tn = (λhn)/n, we get that, for

every x ∈ [0, hn],

|B∗
n( fλ)(x)− e−λx| ≤ λhn

2ne
, (4.3)

so that

‖B∗
n( fλ)− fλ‖∞ ≤ λhn

2ne
, (4.4)

and this completes the proof of (4.1). Statement (i) follows directly from (4.1) and
the results in [16].

In order to prove statement (ii), we notice that (see (3.4)), for every 0 ≤ x ≤ hn,

|B∗
n(e1)(x)− e1(x)| ≤ x (Mn − 1)

and

|B∗
n(e2)(x)− e2(x)| ≤ x2

(

M2
n − 1

)

+ x
hn

2n
Mn,

so that lim
n→+∞

B∗
n(h) = h uniformly on compact subsets of [0 + ∞[ for every

h ∈ {e0, e1, e2} on account of (2.10) and the fact that Mn → 1 as n → ∞. Since
{e0, e1, e2} ⊂ E∗

2 , the result follows from [8, Theorem 3.5].

A question about the usefulness, from an approximation theory point of view,
of the sequence (B∗

n)n≥1 naturally arises. To answer this question, we recall that,
if (Ln)n≥1 is a sequence of positive linear operators acting on E∗

2 such that
Ln(e0) = e0 for all n ≥ 1, then, for every f ∈ Cb([0,+∞[), n ≥ 1 and x ≥ 0,

|Ln( f )(x) − f (x)| ≤ 2ω( f ,
√

Ln(ψ2
x)(x)), (4.5)

where ω( f , δ) is the classical first modulus of continuity (see [9, Theorem 5.1.2]).
Hence, in approximating a function f ∈ Cb([0,+∞[), for a given n ≥ 1,

the operator B∗
n( f ) performs better than Bn,hn

( f ) in those points x ∈ [0, hn] such
that

B∗
n(ψ

2
x)(x) ≤ Bn,hn

(ψ2
x)(x), (4.6)

i.e, taking (2.8) and (3.9) into account, in all x ∈ [0, hn] verifying

(rn(x)− x)

[

rn(x)− x +
hn

n
− 1

n
rn(x)−

1

n
x

]

≤ 0.

Given (3.11), the latter leads to

gn(x) :=
n − 1

n
rn(x)−

n + 1

n
x +

hn

n
≤ 0
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which is true for x ∈ [x0,n, hn] , x0,n ∈ (hn/2, hn) being unique. Indeed,
gn(hn) < 0 < gn(0), so there exists x0,n ∈ (0, hn) such that g(x0,n) = 0. In
addition, gn is concave and gn(hn/2) < 0, hence the assertion.

We pass now to estimate the rate of convergence of (B∗
n( f ))n≥1 to f in Theo-

rem 4.2, (i). To this end, recall the definition of a suitable modulus of continuity.
More precisely, in [25] the author introduced the modulus of continuity ω∗( f , δ)
defined, for every δ ≥ 0 and f ∈ C∗([0,+∞[), by

ω∗( f , δ) = sup
x,t≥0

|e−x−e−t|≤δ

| f (x)− f (t)| .

We remark that

ω∗( f , δ) = ω(Φ( f ), δ) ,

where ω(·, δ) stands for the usual modulus of continuity and Φ : C∗([0,+∞[) →
C([0, 1]) is the isometric isomorphism defined by setting

Φ( f )(t) =

{

f (− ln t) if 0 < t ≤ 1 ,
lim

x→+∞
f (x) if t = 0 , for every f ∈ C∗([0,+∞[) . (4.7)

Let us mention the main result in [25]: for a sequence of positive linear oper-
ators Ln : C∗([0,+∞[) → C∗([0,+∞[) (n ≥ 1), if

an = ‖Ln(e0)− e0‖∞ , bn = ‖Ln( f1)− f1‖∞ , cn = ‖Ln( f2)− f2‖∞ (4.8)

are null sequences, then for every n ≥ 1 and f ∈ C∗([0,+∞[),

‖Ln( f )− f‖∞ ≤ ‖ f‖∞an + (2 + an)ω∗( f ,
√

an + 2bn + cn) . (4.9)

Note that the modulus ω∗( f , δ) is closely related to the particular Korovkin
subset chosen for the space C∗([0,+∞[) (see [25, p. 135]).

The following result is indeed a direct consequence of (4.10).

Theorem 4.3. Under the same assumptions of Theorem 4.2, for every f ∈ C∗([0,+∞[)
and n ≥ 1,

‖B∗
n( f )− f‖∞ ≤ 2 ω∗

(

f ,

√

hn

ne

)

. (4.10)

Proof. It is clear that, following the notation in (4.8), an = cn = 0 and bn is given
by (4.4) with λ = 1 for every n ≥ 1.

Remark 4.4. Estimate (4.10) improves the one available in [25, Corollary 3.4],
for the classical Bernstein-Chlodovsky operators (see (1.1)); in fact, for every
f ∈ C∗([0,+∞[) and n ≥ 1 (see (4.8)),

‖Bn,hn
( f )− f‖∞ ≤ 2ω∗

(

f ,

√

2hn

ne

)



690 T. Acar – M. Cappelletti Montano – P. Garrancho – V. Leonessa

In the same spirit of [25], we can consider on the space C∗([0,+∞[) a modulus
of continuity of second order; namely, for every δ ≥ 0 and f ∈ C∗([0,+∞[), we
set

ω∗
2( f , δ) = ω2(Φ( f ), δ) ,

Φ being as in (4.7).
Note that the inverse operator Φ−1 is given by Φ−1(g)(t) = g(e−t) for each

g ∈ C([0, 1]) and t ≥ 0.
Starting from the operators B∗

n on C∗([0,+∞[), we obtain a new sequence of
positive linear operators acting on C([0, 1]), namely

Z∗
n(g) = Φ(B∗

n(Φ
−1(g))) (g ∈ C([0, 1]), n ≥ 1) . (4.11)

Observe that the sequences (B∗
n)n≥1 and (Z∗

n)n≥1 are isomorphic, that is for
every f ∈ C∗([0,+∞[) and n ≥ 1,

‖B∗
n( f )− f‖∞ = ‖Z∗

n(Φ( f )) − Φ( f )‖∞ , (4.12)

hence the problem of estimating the rate of convergence of (B∗
n)n≥1 in the space

C∗([0,+∞[) might be transferred to evaluate the rate of convergence of the
sequence (Z∗

n)n≥1 in C([0, 1]).
In this manner, rather that proving new estimates of the rate of convergence

on C∗([0,+∞[), we can use some known results in C([0, 1]) (see [10, Section 4] for
a similar reasoning applied to other approximation processes). For example, we
can apply [31, Theorem 2.2.1].

Theorem 4.5. Under the same assumptions of Theorem 4.2, for every f ∈ C∗([0,+∞[)
and n ≥ 1,

‖B∗
n( f )− f‖∞ ≤ 1

2e

√

hn

n
ω∗
(

Φ( f ),

√

hn

n

)

+

(

1 +
1

e

)

ω∗
2

(

Φ( f ),

√

hn

n

)

.

Proof. As the equality (4.12) suggests, we search for a uniform estimate of
‖Z∗

n(Φ( f )) − Φ( f )‖∞ . For every n ≥ 1, f ∈ C∗([0,+∞[), 0 ≤ x ≤ 1 and δ > 0,
the following pointwise estimate holds (see [31, Theorem 2.2.1]):

|Z∗
n(Φ( f ))(x) − Φ( f )(x)| ≤ |Z∗

n(e0)(x)− 1||Φ( f )(x)| + 1

δ
|Z∗

n(ψx)(x)| ω∗( f , δ)

+

(

Z∗
n(e0)(x) +

1

2δ2
Z∗

n(ψ
2
x)(x)

)

ω∗
2( f , δ) .

It is easy to see that Z∗
n(e0) = e0. Moreover, for n ≥ 1 and x ∈ [0, 1],

Z∗
n(ψx)(t) =

{

B∗
n( f1 − xe0)(− log t) if 0 < t ≤ 1 ,

0 if t = 0 ,

Z∗
n(ψ

2
x)(t) =

{

B∗
n( f2 − 2x f1 + x2e0)(− log t) if 0 < t ≤ 1 ,

0 if t = 0 ,
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where fλ, λ = 1, 2, is defined by (2.2). Hence,

|Z∗
n(ψx)(x)| =

{

|B∗
n( f1)(− log x)− x| if e−hn ≤ x ≤ 1 ,

0 if 0 ≤ x < e−hn ,

and from (4.3) it follows that |Z∗
n(ψx)(x)| ≤ hn/(2en). Moreover,

Z∗
n(ψ

2
x)(x) =















B∗
n( f2)(− log x)− x2 − 2x(B∗

n( f1)(− log x)− x)
if e−hn ≤ x ≤ 1 ,

0 if 0 ≤ x < e−hn ,

and again from (4.3) we have

Z∗
n(ψ

2
x)(x) ≤

hn

en
+

hn

en
=

2hn

en
.

Setting δ =
√

hn/n we get the desired estimate.

5 Uniform weighted approximation by the B∗
n’s

The approximation properties of the operators B∗
n on the weighted function spaces

E0
m, E∗

m and Em are shown below. Moreover, some estimates of the rate of conver-
gence are presented. For (a generalization of) Bernstein-Chlodovsky operators
(1.1) similar matters were tackled in [13], where the authors dealt with the space
E0

m, m > 2.

Theorem 5.1. Consider the operators B∗
n (n ≥ 1) defined by (3.5). Then, for a fixed

n ≥ 1, the following propositions hold:

(i) For m ≤ n, B∗
n is a positive linear operator from Em into itself and ‖B∗

n‖Em ≤
1+ Mm

n + Cn,m, where Mn and Cn,m are given by (3.4) and (3.13), respectively. In
particular, if (2.10) holds true, supn≥1 ‖B∗

n‖Em < +∞. Finally, B∗
n(E

∗
m) ⊂ E∗

m.

(ii) For m ≤ n, B∗
n(E

0
m) ⊂ E0

m.

Proof. (i) Fix n ≥ 1. First of all, note that, from (3.5) and (3.12), for x ≤ hn,

wm(x)B
∗
n(em)(x) ≤ wm(x)Mm

n xm + Cn,m−1 ≤ Mm
n + Cn,m−1 ,

where Mn and Cn,m−1 are give by (3.4) and (3.13).
Moreover, for x > hn,

wm(x)B
∗
n(em)(x) = xmwm(x) ≤ 1 ≤ Mn ≤ Mm

n + Cn,m−1.

Therefore, for every x ≥ 0, wm(x)B
∗
n(em)(x) ≤ Mm

n +Cn,m−1, where Mn is defined
by (3.4). We remark that, under assumption (2.10), (Mn)n≥1 is indeed a bounded
sequence.
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Summing up, if f ∈ Em and x ≥ 0,

wm(x)|B∗
n( f )(x)| ≤ ‖ f‖mwm(x)B

∗
n(e0 + em)(x)

= ‖ f‖mwm(x)(B
∗
n(e0)(x) + B∗

n(em)(x)) ≤ ‖ f‖m(1 + Mm
n + Cn,m−1) ,

hence (i) holds true.
(ii) The statement can be achieved by noting that the subspace D generated

by the family { fλ : λ > 0} is dense in C0([0,+∞[), and consequently in E0
m;

moreover, B∗
n(D) ⊂ C0([0,+∞[) ⊂ E0

m.

Theorem 5.2. Let (B∗
n)n≥1 be the sequence of operators defined by (3.5) and assume that

(2.10) holds true. If f ∈ E∗
m (and, in particular, if f ∈ E0

m), then

lim
n→+∞

B∗
n( f ) = f with respect to ‖ · ‖m. (5.1)

Moreover, if f ∈ Em, then

lim
n→+∞

wm(x)(B
∗
n( f )(x) − f (x)) = 0 (5.2)

uniformly on compact subsets of [0,+∞[.

Proof. We begin the proof by showing (5.1) for functions in E0
m with a density ar-

gument. Indeed, under assumption (2.10), the sequence (B∗
n)n≥1 is equibounded

on E0
m by means of Theorem 5.1 and the linear subspace generated by ( fλ)λ>0 is

dense in E0
m. As we have shown in Theorem 4.2, for every λ > 0, lim

n→+∞
B∗

n( fλ) =

fλ with respect to ‖ · ‖∞ and hence with respect to ‖ · ‖m, and this completes the
proof.

On the other hand, if f ∈ E∗
m, then f = g + αm(e0 + em), where

αm := lim
x→+∞

wm(x) f (x) ∈ R and g = f − αm(e0 + em) ∈ E0
m. Therefore (5.1)

follows for f too, in virtue of (3.14).
Formula (5.2) is a consequence of the preceding result and the inclusion

Em ⊂ E0
m+1 since, if J is a compact subset of [0,+∞[, then

wm(x)|B∗
n( f )(x) − f (x)| ≤ K‖B∗

n( f )− f‖m+1

for every x ∈ J, where K := sup
x∈J

wm(x)
wm+1(x)

.

For the convergence in E0
m we have the following result.

Theorem 5.3. For sufficiently large n ≥ 1 and f ∈ E0
m with m > 2,

‖B∗
n( f )− f‖m ≤ 2ω

(

f , αm

√

M2
n − 1 + βm

√

hn

n
Mn

)

, (5.3)

where Mn is given by (3.4) and αm, βm are suitable constants depending only on m.
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Proof. It is known that (see [9, Theorem 5.1.2]), for any n ≥ 1, x ∈ [0, hn], f ∈ E0
m

with m > 2 and δ > 0,

|B∗
n( f )(x) − f (x)| ≤

(

1 +
1

δ

√

B∗
n(ψ

2
x)(x)

)

ω( f , δ), (5.4)

where ω( f , δ) is the classical first modulus of continuity. Hence,

‖B∗
n( f )− f‖m ≤

(

1 +
1

δ
sup

x∈[0,hn]

√

B∗
n(ψ

2
x)(x)

1 + xm

)

ω( f , δ),

so that from the pointwise estimate (5.4) it is possible to get a uniform weighted
estimate. To this end, we evaluate

sup
0≤x≤hn

√

B∗
n(ψ

2
x)(x)

1 + xm
.

First, by a straightforward computation, for largely enough n ≥ 1, we have

sup
0≤x≤hn

x

1 + xm
= max







hn

1 + hm
n

,

1
m√m−1

1 + 1
m−1







=

1
m√m−1

1 + 1
m−1

=: αm,

and

sup
0≤x≤hn

√
x

1 + xm
= max







√
hn

1 + hm
n

,

1
2m√2m−1

1 + 1
2m−1







=

1
2m√2m−1

1 + 1
2m−1

=: βm ,

since

lim
n→∞

√
hn

1 + hm
n
= 0 = lim

n→∞

hn

1 + hm
n

.

Moreover, on account of (3.3), (3.9) and (3.11),

B∗
n(ψ

2
x)(x) ≤ M2

nx2 +
hn

n
Mnx − x2 =

(

M2
n − 1

)

x2 +
hn

n
Mnx .

Hence,

sup
0≤x≤hn

√

B∗
n(ψ

2
x)(x)

1 + xm
≤ αm

√

M2
n − 1 + βm

√

hn

n
Mn,

and from this, taking δ = αm

√

M2
n − 1 + βm

√

hn
n Mn, (5.3) follows.

In order to estimate the rate of the convergence in E∗
m, we may use a similarity

technique as made at page 690. In this case, we define the isometric isomorphism
Φm between E∗

m and C([0, 1]) defined by

Φm( f )(t) =

{

(wm f )(− log t) 0 < t ≤ 1
lim

x→+∞
(wm f )(x) t = 0 for any f ∈ E∗

m.
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Then, on the space E∗
m we can define two new moduli of continuity; namely,

for every δ ≥ 0 and f ∈ E∗
m, we set

ω∗
m( f , δ) = ω(Φm( f ), δ) ,

and
ω∗

2,m( f , δ) = ω2(Φm( f ), δ) .

If we now consider the operators B∗
n acting on E∗

m, we can define

W∗
n (g) = Φm(B

∗
n(Φ

−1
m (g))) (g ∈ C([0, 1]), n ≥ 1) , (5.5)

where the inverse operator Φ−1
m is given by Φ−1

m (g) = w−1
m (t)g(e−t) for each

g ∈ C([0, 1]) and t ≥ 0; (W∗
n )n≥1 is a sequence of positive linear operators on

C([0, 1]).
Further, for every f ∈ E∗

m and n ≥ 1,

‖B∗
n( f )− f‖m = ‖W∗

n (Φm( f ))− Φm( f )‖∞ ,

hence again we may estimate the rate of convergence of (B∗
n)n≥1 in E∗

m by means
of estimates of the sequence (W∗

n )n≥1 in C([0, 1]), as the following result shows.

Theorem 5.4. For every n, m ≥ 1, m ≤ n, and f ∈ E∗
m,

‖B∗
n( f )− f‖m ≤ (Mm

n − 1 + Cn,m−1)||Φm( f )||∞

+ H1,m
4

√

hn

n
ω∗

m

(

f ,
4

√

hn

n

)

+

(

Mm
n + Cn,m−1 +

1

2
H2,m

√

hn

n

)

ω∗
2,m

(

f ,
4

√

hn

n

)

,

where H1,m, H2,m are suitable positive constants depending only on m, and Mn and
Cn,m−1 are given in (3.4) and (3.13).

Proof. Thanks to (5.5) we evaluate ‖W∗
n (Φm( f )) − Φm( f )‖∞ by applying

[31, Theorem 2.2.1].
Easy calculations show that, for n ≥ 1 and x ∈ [0, 1],

W∗
n (e0)(t) =

{

(wmB∗
n(e0 + em))(− log t) if 0 < t ≤ 1,

1 if t = 0,

W∗
n (ψx)(t) =

{

(wmB∗
n((1 + em)( f1 − xe0)))(− log t) if 0 < t ≤ 1,

0 if t = 0,

and

W∗
n (ψ

2
x)(t) =

{

(wmB∗
n((1 + em)( f2 − 2x f1 + x2e0)))(− log x) if 0 < t ≤ 1,

0 if t = 0,

where fλ, λ = 1, 2, is defined by (2.2).
Now, fix 0 < x ≤ 1; recalling the definition of the operators B∗

n, and thanks to
(3.12), we have

|wm(− log x)B∗
n(e0 + em)(− log x)− 1|

{

≤ Mm
n − 1 + Cn,m−1 if e−hn ≤ x ≤ 1,

= 0 if 0 ≤ x < e−hn ;
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hence,
||W∗

n (e0)− e0||∞ ≤ Mm
n − 1 + Cn,m−1 .

Moreover, for every e−hn ≤ x ≤ 1, by using the Cauchy-Schwarz inequality,
we get

|W∗
n (ψx)(x)| ≤ wm(− log x)B∗

n(|(1 + em)( f1 − xe0)|)(− log x)

≤ wm(− log x)
√

B∗
n((e0 + em)2)(− log x)

√

B∗
n(( f1 − xe0)2)(− log x)

= wm(− log x)
√

B∗
n((e0 + em)2)(− log x)

√

Z∗
n(ψ

2
x)(x).

We point out that, by (3.12),

Lm := sup
0<x≤1

wm(− log x)
√

B∗
n((e0 + em)2)(− log x) ∈ R;

therefore, on account of what has been made in the proof of Theorem 4.5, there
exists H1,m > 0 such that

|W∗
n (ψx)(x)| ≤ H1,m

√

hn

n
.

Note that, for 0 ≤ x < e−hn , W∗
n (ψx)(x) = 0, therefore the previous inequality

holds for every x ∈ [0, 1].
Finally, for every 0 < x ≤ 1, we get

W∗
n (ψ

2
x)(x) = wm(− log x)B∗

n((1 + em)( f2 − 2x f1 + x2))(− log x)

≤ wm(− log x)
√

B∗
n((1 + em)2)(− log x)

√

B∗
n(( f2 − 2x f1 + x2)2)(− log x)

≤ Lm

√

Z∗
n(ψ

4
x)(x).

Hence, keeping (4.3) in mind, there exists K3 > 0 such that

W∗
n (ψ

4
x)(x) = B∗

n( f4)(− log x)− x4 − 4x(B∗
n( f3)(− log x)− x3)

+ 6x2(B∗
n( f2)(− log x)− x2)− 4x3(B∗

n( f1)(− log x)− x) ≤ K3
hn

n
,

so that

W∗
n (ψ

2
x)(x) ≤ H2,m

√

hn

n
,

for a suitable constant H2,m > 0 depending on m, only.
From the above considerations, applying [31, Theorem 2.2.1], for every n ≥ 1,

f ∈ E∗
m, 0 ≤ x ≤ 1 and δ > 0, we get

|W∗
n (Φm( f ))(x) − Φm( f )(x)| ≤ |W∗

n (e0)(x)− 1||Φm( f )(x)|

+
1

δ
|W∗

n (ψx)(x)|ω∗
m( f , δ) +

(

W∗
n (e0)(x) +

1

2δ2
W∗

n (ψ
2
x)(x)

)

ω∗
2,m( f , δ)

≤ (Mm
n − 1 + Cn,m−1)|Φm( f )(x)|

+
1

δ
H1,m

√

hn

n
ω∗

m( f , δ) +

(

Mm
n + Cn,m−1 +

1

2δ2
H2,m

√

hn

n

)

ω∗
2,m( f , δ),

(see (3.13)) and, for δ := 4
√

hn/n we get the required assertion.
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[25] A. Holhoş, The rate of approximation of functions in an infinite interval by positive
linear operators, Studia Univ. ”Babeş- Bolyai”, Mathematica, Volume LV (2)
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