Open Access
November 2019 Long-time heat kernel estimates and upper rate functions of Brownian motion type for symmetric jump processes
Yuichi Shiozawa, Jian Wang
Bernoulli 25(4B): 3796-3831 (November 2019). DOI: 10.3150/19-BEJ1111

Abstract

Let $X$ be a symmetric jump process on $\mathbb{R}^{d}$ such that the corresponding jumping kernel $J(x,y)$ satisfies

\[J(x,y)\le\frac{c}{|x-y|^{d+2}\log^{1+\varepsilon}(e+|x-y|)}\] for all $x,y\in\mathbb{R}^{d}$ with $|x-y|\ge1$ and some constants $c,\varepsilon>0$. Under additional mild assumptions on $J(x,y)$ for $|x-y|<1$, we show that $C\sqrt{r\log\log r}$ with some constant $C>0$ is an upper rate function of the process $X$, which enjoys the same form as that for Brownian motions. The approach is based on heat kernel estimates of large time for the process $X$. As a by-product, we also obtain two-sided heat kernel estimates of large time for symmetric jump processes whose jumping kernels are comparable to

\[\frac{1}{|x-y|^{d+2+\varepsilon}}\] for all $x,y\in\mathbb{R}^{d}$ with $|x-y|\ge1$ and some constant $\varepsilon>0$.

Citation

Download Citation

Yuichi Shiozawa. Jian Wang. "Long-time heat kernel estimates and upper rate functions of Brownian motion type for symmetric jump processes." Bernoulli 25 (4B) 3796 - 3831, November 2019. https://doi.org/10.3150/19-BEJ1111

Information

Received: 1 August 2017; Revised: 1 July 2018; Published: November 2019
First available in Project Euclid: 25 September 2019

zbMATH: 07110156
MathSciNet: MR4010973
Digital Object Identifier: 10.3150/19-BEJ1111

Keywords: Dirichlet form , heat kernel , symmetric jump process , upper rate function

Rights: Copyright © 2019 Bernoulli Society for Mathematical Statistics and Probability

Vol.25 • No. 4B • November 2019
Back to Top