Abstract
Let $Y_t$ satisfy the stochastic difference equation $Y_t = \sum^p_{j = 1}\eta_jY_{t - j} + e_t$ for $t = 1, 2, \cdots$, where the $e_t$ are independent identically distributed $(0, \sigma^2)$ random variables and the initial conditions $(Y_{-p + 1}, Y_{-p + 2}, \cdots, Y_0)$ are fixed constants. It is assumed the true, but unknown, roots $m_1, m_2, \cdots, m_p$ of $m^p - \sum^p_{j = 1}\eta_jm^{p - j} = 0$ satisfy $m_1 = m_2 = 1$ and $|m_j| < 1$ for $j = 3, 4, \cdots, p$. Let $\hat{\mathbf{\eta}}$ denote the least squares estimator of $\mathbf{\eta} = (\eta_1, \eta_2, \cdots, \eta_p)'$ obtained by the least squares regression of $Y_t$ on $Y_{t - 1}, Y_{t - 2}, \cdots, Y_{t - p}$ for $t = 1, 2, \cdots, n$. The asymptotic distributions of $\hat{\mathbf{\eta}}$ and of a test statistic designed to test the hypothesis that $m_1 = m_2 = 1$ are characterized. Analogous distributional results are obtained for models containing time trend and intercept terms. Estimated percentiles for these distributions are obtained by the Monte Carlo method.
Citation
David P. Hasza. Wayne A. Fuller. "Estimation for Autoregressive Processes with Unit Roots." Ann. Statist. 7 (5) 1106 - 1120, September, 1979. https://doi.org/10.1214/aos/1176344793
Information