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ESTIMATION FOR AUTOREGRESSIVE PROCESSES
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Let Y, satisfy the stochastic difference equation Y, = =2_,%,Y,_; + e, for
t=1,2,---, where the ¢ are independent identically distributed (0, %)
random variables and the initial conditions (Y_, ., Y_,. * -+ - , ¥) are fixed
constants. It is assumed the true, but unknown, roots my, my, - - -, m, of
mP — ZE_ mmP~/ = 0 satisfy m; = my = 1 and |m| < 1 forj=3,4,---,p.
Let 7 denote the least squares estimator of n = (1, 1, - * * , 1,)’ obtained by
the least squares regression of Y, on Y, ,, ¥, 5+ -, Y,_, for t=
1,2,- - -, n. The asymptotic distributions of 7 and of a test statistic designed
to test the hypothesis that m; = m, = 1 are characterized. Analogous distribu-
tional results are obtained for models containing time trend and intercept
terms. Estimated percentiles for these distributions are obtained by the Monte
Carlo method.

1. Introduction. Let the time series {Y,} satisfy

(1.1) Y,=3_mY,_ +e t=12---,

“where {¢,}%2, is a sequence of independent random variables with mean zero and
variance ¢2. It is assumed that the e, are either identically distributed or that
E{|e*®} <M for some 8 > 0 and all +. It is further assumed that the initial

conditions (Y_,,, Y_, 45« - -, ¥,) are known constants. The time series Y, is
said to be an autoregressive process of order p. Let
(12) m? —3P_qmP~/ =0

be the characteristic equation of the process. The roots of (1.2), denoted by
my, my, + * -, m, are the characteristic roots of the process.

It is assumed that 9 = (m;, m,, - - - , 7,)" and o2 are unknown. We shall consider
estimation of i and tests of hypotheses concerning 7. Let the observations
(Y, Yy, - - -, Y,) be available and let ®, = (Y,_,, ¥,_,, - - -, Y,_,). Define the
least squares estimator of by
(13) | 4= (2., 2,9) 2@, Y,

The estimator % is the maximum likelihood estimator of n if the e, are normally
distributed. If |m;| < 1forj=1,2,- - -, p, ¥, is converging to a weakly sltationary
process as ¢ — co. In the stationary case the asymptotic distributions of nz(1 — 7),

and of related “F-type” likelihood ratio test statistics are well known. See Mann
and Wald (1943), Anderson (1959) and Hannan and Heyde (1972).
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AUTOREGRESSION WITH UNIT ROOTS 1107

White (1958) characterized the asymptotic distribution of 7, when p = 1 and
1, = 1. Dickey (1976) obtained an alternative representation of the distribution of
1, for p = 1 and ; = 1. He extended his results to models containing intercept and
time terms. Fuller (1976, Section 8.5) discussed estimation of the pth order model
when the true, but unknown, n is such that |m| =1 and |m| <1 for j =
2,3, -, p. Fuller presents tables of the percentage points of statistics that can be
used to test the hypothesis that m, = 1 given that |m| < 1 forj=2,3,---,p.
Rao (1978) gave the density of the asymptotic distribution of 7, when p = 1 and
1, = 1. Anderson (1959) and Rao (1961), among others, have considered processes

with roots greater than one in modulus.

We shall study the asymptotic properties of 7 and related statistics when the true
but unknown roots of (1.2) satisfy m; = m, =1and |m| < 1forj=3,4,---,p.
We shall also construct a test of the hypothesis m; = m, = 1. Models with
intercept and slope terms are also considered. The case p =2 is considered in
Sections 2, 3, and 4 and the results are extended to higher order processes in
Section 5. An example is given in Section 7.

2. Order results. Consider the second order model
(2.1) Yy=nY_,+nY_,+e t=12---,
and assume, for convenience, that Y_, = Y, = 0. We reparametrize the model to
obtain

(22) Yy=aY,_ +B(Y,_ = Y, ) +e.

The condition that the roots of (1.2) satisfy m; = m, = 1 is equivalent toa = 8 =
1. Let

(23) (@ B) = (Z1-W¥)” 'Zi- Y,

where ¢, = (Y,_,, Z,_,) and Z, = Y, — Y,_,. In this section we establish the order

in probability of the differences @ — o and B — B. As preliminaries the order of
statistics entering the definition of (&, B) are derived in Lemmas 2.1 and 2.2.

LEMMA 2.1. Let model (2.1) hold with m; = m, = 1. Let {e,}?2, be a sequence of
independent (0, 6) random variables. Assume the e, are identically distributed or
E{|le*®} <M for all t and some 8§ > 0. Let ¢ > 0 be given. Then there exist
M, >0, M, >0, and N such that for n > N

P{Mn® <Y< Mp’} >1—g¢
P{Mn* <3\ Y} <Myn'} > 1 - e
ProOF. Solving the defining difference equation we obtain
Y, =231t n=12,-
It is readily verified that

—3y2 2.2
3n"°Y, —p0°X)
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and
20n (21, Y,)* >e0’xd,
where x? denotes a chi-square random variable with one degree of freedom. Now
nS_ YR > B, Y > a7 (T, Y
and the result follows because E {¢~3Y?} is uniformly bounded. []

LEMMA 2.2. Let the model assumptions of Lemma 2.1 hold. Let ¢ > 0 be given
and define

n —lgn
(24) b(n) = (2 -1Y12—1) Y2,
Then there exist M, > 0, M, > 0, and N such that for all n > N
P{Mn~' <b(n) <Mmun~'} >1—e.
Proor. Using Y, =2Y,_; — Y,_, + ¢, we obtain
220.1Y, 2, =231, Y,Y,_ 230, Y2 =Y, Y, + 3,V
and '
n -1 n
b(n) = (zr-lez—l) (% Yy, , _'2"21=1Yt—1et)°

Because Y, (Y, — Y, ;) = Op(”z)’ 2i-1Y,_1e = O,(n), and (ZI_,Y2)7'=
0,(n~*) we have

n -1 -
b(n) =3 Y (272, Y2)  + O,(n ?).
The result follows by Lemma 2.1. [J
We now give the main result of this section.

THEOREM 2.1. Let the model assumptions of Lemma 2.1 hold. Then
[n*(& =1),n(B =1)] = O,(1).
ProoOF. The error in the least squares estimator is
(@-1,A-1) = (Zi_ ) 'Sl e,
=D _I(Nl’ Ny,
where
N, = (27-123—1)(27-11[;—1":) = (Yo Z )21 Z, e,
Nz = (2?_1)’,2_1)(2"_12,_18,) - (zn-lYt—th—l)(zn-lYt—let)’

D= (En-lez—l)(zn-lZzz— 1) - (2"-1Yz—1zz—1)2~
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It can be established that
(27-1212—1)(27-1)’;—1":) =0, (”4)
(Zi1Y,21Z,_)(Zo1Z,_18) = O, (”4)

From Lemma 2.1 3"_, Y2, = O, (n“) and it follows that N, = O,(n*) and N, =
0,(n®). To complete the proof we shall show that D ~' = 0,(n~°). Now

D= (2',‘=1)’,2 1)(2r-lzz2 1 bz(”)zr-lez—l),

where b(n) was defined in Lemma 2.2. Let ¢ > 0 be given and choose M; > 0,
M, > 0, and N as in Lemma 2.2 so that, for n > N

P{Mpn~' <b(n) <My~ '} >1—¢/3.

Let n > 4M, 'M,N and n* = [27 M, 'M,n], where [-] denotes the greatest integer
function. Note that n* > N and

P{b(n*) >2M,;n""'} > 1—¢/3,
where
b(n*) = (2':‘-1)’;—12}—1)(27;1)’;2—1)_1-
Therefore P{[b(n*) — b(n)* > M3n~2} > 1 — 2¢/3. We have
D = (B Y2 )(Eimi[Zimy ~ b, T)
> (E”-lyz2 1)(21-1 -1~ b(n*)Y,_ + {b(n*) — b(n)}Y,_, 2)
= (S Y2 ) (2 2y = B(n") Y, ] +[b(n*) = b() PSL,Y2)
[b("*) - b(”)]z(2 1Yzz 1)
By Lemma 2.1 there exist M; > 0 and Ny > N such that for n > N,
P{Z1 Y2, <Myn*} <e/3.

Therefore, for n* > N,

P D<M2M(Mln)8 <
—_— &
3\ 204,

and P{D < Mn®} <&, where M = (256 M3)~'MM3. Thus D~' = 0,(n"%. [I

3. Asymptotic distributions. In this section we consider generalizations of
model (2.1). To aid in differentiating among the models we add subscripts to the
parameters appearing in the models. Thus we rewrite model (2.2) as

(3.1) Y,=aY,_ +B(Yio 1 — Y, ) + e
The first generalization of model (3.1) is the model
(32) Yi=m+aY +B(Y,_ - Y ) +e

and the second generalization is the model
(33) Yy=p+ 0+ Y+ B(Y_,— Y, ) +e.



1110 DAVID P. HASZA AND WAYNE A. FULLER

If the roots of the characteristic equation (1.2) satisfy m, = 1 and |m,| < 1 and if
p # 0O the process (3.2) will display a linear time trend or drift. The process (3.3)
will display somewhat similar behavior if 8, # 0 and both roots of the characteris-
tic equation are less than one in absolute value. If m;, = m, = 1 and g, # 0 the
process (3.2) will contain a quadratic trend. Therefore the three models (3.1)—(3.3)
form an interesting class of time series models.

Let § = (a1, B, & = (12 @3, B, & = (113, 03, a3, By, Vi, =Y, Z,_))s
=, Y_,Z_),and ¢, = (1, ¢, Y,_,, Z,_,). Then the least squares estimator of

the parameters of the model indexed by i is

N -1

§ = Clawudls) DL &
For normal e, the likelihood ratio tests of hypotheses:about elements of £ are
monotone functions of the usual “F-statistics” of normal regression theory. For

example, to test the hypothesis H, : (a;, 8;) = (1, 1) under the maintained model
(3.1) with normal e, and fixed (Y, Y_)), the test statistic is

®,(2) = (23%)_1(21 - 1)'27=1‘!‘11(K —2Y,_,+ Y,_,),
where 1 = (1, 1) and
st=(m-2)7's[Y, - wd T

Let ®,(2) and ®,(3) denote the analogous test statistics for the hypotheses (a,, £,)
= (1, 1) and (, ;, B;) = (0, 1, 1) for model (3.2) and let ®,(2) and ®,(4) denote
the test statistics for the hypotheses (as, B;) = (1,1) and (s, 05, a3, ;) =
0, 0, 1, 1) for model (3.3).

We shall obtain representations of the limiting distributions of the ®-statistics in
two steps. We first demonstrate that each statistic can be expressed approximately
as a continuous differentiable function of a vector W, of six elementary statistics
defined in Lemma 3.1. The limiting distribution of the vector of elementary
statistics is obtained in Theorem 3.1. The limiting distributions of the £ are
presented in Theorem 3.2 and the limiting distributions of the ®-statistics in

Corollary 3.1.

LEMMA 3.1.  Let model (2.1) hold with m; = m, = 1. Let {e,}?>, be a sequence of
independent (0, 02) random variables. Assume the e, are identically distributed or
E{|e[**®} <M for all t and some & > 0. Let W, = (W,, W,, Wi,
Wans Wi We,), where

1 _
(Wln’ Wzn) = n_Z(Zn_l, n 1Yn—l)’

Lo —29n —3gn
(W3 W) = n72(n7227_\Y,_,n 32z-1th—1)’

(WSn’ W6n) = (n-Ze:lAnell’ n_4e:lA'23en)’

e, =(e, e -,e._,),A, =B,B, and B, is the lower triangular matrix of dimen-
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sion n — 1 with B;; = 1 for i > j. Then

(W) n7'ZZ e =W~ 0,(1),

@) n3Zl e = Wy, — W, : o3,

(111) n_iz';-lyt—let = Wln W2n - WSn + Op(n_i)’

V) nTIZ_Z,_y = Wy — Wi, + Op(n7),

) n7ZI Y, \Z,_ =W + Op("_]),

(VI) n_42n-1Yt2—1 = W6n - W22n + 2W2n W3n‘

PrOOF. Result (i) is given by Anderson (1959). We present a proof only for
result (vi) as similar techniques apply to the other results.

The ¢th element of A,e, is Y,_; — Y,_,. Therefore

n4W6n = 2't';ll(Yn—l - Yt—l)2
=(n-1)Y2,-2Y,_ 3 ly,_, +3"Clv2,

and
Y = n'We, —nY]  +2Y, 3 Y,
Therefore '
_4Et=l —1= W6n W22n + 2W2nW3n‘ ﬂ
Let A, = A1, Ayps + * + 5 A,y ») denote the vector of eigenvalues of A,, where
A, > Ay, > -+ > A, ,. Furthermore let x;, = (X;,;, X0 * * * » X;, ,—1)" denote

the eigenvector associated with A, and define the orthogonal transformation of e,
into u, = (uln’ Upps = ° ° 5 Uy, n)' by

Uy = Zi2 X €
where
A, =1sec?2n — 1)"'(n — i)w
and
Xige = 227 — 1)77 cos[ @n — 1)7'(2i = V(2 - 1)].
See Dickey (1976) for a derivation of the roots and vectors of A,.
LEMMA 3.2. Let the assumptions of Lemma 3.1 hold and let k > 1 be fixed. Then
(1 Uy * * 5 Upn)’ —>eNk(0s °2Ik)-
ProoF. Because the cosine function is bounded we have
lim, _, ., Sup, ,,_ ;%% = 0.
Therefore we may apply the Lindeberg central limit theorem for triangular arrays,
Chung (1974, page 205) to obtain
u,, =eN(0, 0?).
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Because the covariance matrix of (uy,, Uy, = * » ) is oI, for all n >k,
2
(Uyps gy * * 5 ) N0, 071p). ]

In obtaining the asymptotic properties of our estimators we require the asymp-
totic joint distribution (as n — o) of the W),. Lemma 3.3 will be used to obtain the
joint distribution.

LemMA 3.3. Let the assumptions of Lemma 3.1 hold. Then, for fixed i > 1,

lim, (81> O2in) = 2%(7,, v} ),
B0, oo (B3 8a) = 23(¥2 — v 372 — ¥2 + 7¥7),
lim,,_, A, = 77,
where
=2[(2i — 7]~ '(-1)""! i=1,2,---,
and
8n = 02 Cov(u,, W,,) , j=1-+-,4i=12---,n—1L

ProoF. The results for §,,,, 8,,,, and A, are proved in Dickey (1976). We prove
only the result for §,;, as the other proofs are similar. We have

Cov(uy,, W,,) = Cov(Z',';llxme,, ”_%27=1tyz—1)-
Therefore

— 1)

284m =n ZCOV(Z': l'xmtet’ 2':= l: (n -3_ t) ( 2 et) + O(n_l)

_ 2 -7( 7;;[ (n = 0 t(nz—t)z]co [ 2 -1 (- )ﬂ]) + 0(n-Y),

For fixed r € {1,2, - - - } we have

lim, |  n~ 221! cos[ ;;: 11 (¢ - )w] = f[lx! cos[(—zi—_zﬂx] dx.

n— oo
It follows that
n—»oo84m 22 (Z‘Yl - Yi3 + 714) 0
We are now in a position to obtain the limiting distribution of W,,.

THEOREM 3.1. Let the assumptions of Lemma 3.1 hold. Let the elements of
W = (W,, Wy, - -, W) be defined by

(Wp WZ) 22(21 I‘Yl I/t’ 21-171 )’
(w3, w,) = 25(2;‘11(% - )V, 2% 1(271‘2 -7+ 71'4) Vi)’
(WS’ W6) = (2 121/12’ 2!=|‘Yl Vz)
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where {V;}2, is a sequence of normal independent (0, 0®) random variables. Then
W,, —)EW.
Proor. From the definition of #, and the fact that the u, are uncorrelated
(0, 0 random variables it follows that

W = 2';;llsjin“in J=1L---,4
WSn = n-zz'i';ll}\in ui%l’
W6n = '1_42'1"-_1l iux%z
Define W, for j=1,2,---,6 and kK <n — 1 analogous to W,, with the
summations truncated at k. We have, for example,
Wink = 52181ty
Let W® forj=1,2,- - -, 6 be defined by
(W0, WiP) = 23(Sh vV, She 7)),
(W39, W) = 23(Sk_ (v — )V, S22 — v2 + ¥V,
(W59, wéP) = (Zi. V2, Zie ).
By Lemma 3.2, for fixed k, the limiting joint distribution (as n— o0) of
(Wines Womir * * * » Wee) is that of W® = (w®, wh, . .. wPy. The vector
W is well defined as a limit a.e. and W® —,W as k — oo.
We wish to show that W, —».W (as n— o). Let A = (A;, Ay, - - - , A¢) be an

arbitrary vector with A’A # 0. Using Lemma 6.3.1 of Fuller (1976) (see also
Dianada 1953) the result will be obtained by showing that

plimk—>oozj6'- IA/( I/an - I/I/;nk) = 0
uniformly in n. Let ¢ > 0 be given. For kK < n — 1 we have
Win = Wi = 2'1'.=_I:+181inuin’
and
n—1

312182, = 072 Var(n~2312le,) =
Furthermore 222.,2y? = 1 and we may choose N, so that
SN2y} >1 -1
Because lim,_, 87, = 2v? it follows that, for k sufficiently large,
10k, <e forall n>k+ 1.

Therefore plim,_, . (W, — Wy,x) = 0 uniformly in n. Similar methods can be used
to establish the analogous result for W,,, W,,, - - - , Wj,. Therefore =5_ A(W,, —
W) converges to zero in probability uniformly in » and W, —W. []
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We now express the least squares estimators as functions of W, and terms of
smaller order in probability. Define

1 1 W, W,

H3 = % % W4 W2 - W3
W, W, Ws— Wi+ 2W,W, 1W?
W2 W2 - W3 % VVZ2 WS

Let H, be the submatrix of H; obtained by deleting the first two rows and columns
and let H, be the submatrix of H; obtained by deleting the second row and
column. Define

02
h, = (Wle - W, %le —'—2-)',
0.2
h, = (Wl, W\W, — W, s Wi — _2_),,

2
h, = (Wl, W, — Wy, W,W, — Ws, W7 - 32—)
LetH,,, h,,, H,,, h,,, H;,, and h;, be defined by analogy to H,, h;, H,, h,, H,, and
h; with W, replaced by W,
THEOREM 3.2. Let the assumptions of Lemma 3.1 hold. Then
@ [7& - D), n(B, - DY >H['h,
(i) [”211'2, 2(sz — 1), n(B, — ) >H; 'h,
(iii) [n? 2#3, ”203, n*(é&; — 1), n( By — Y >cHy 'h.
Proor. By Lemma 3.1
o 5 , _1.1-1
[nz(a1 -1),n(B; - l)] =[H,,l +0,(n" ] [by, + 0,(1)],

(72 78, = 1), n( By = 1) =[Hy, + 0,(n5)] ' [y, + 0,(1)],

[ 72, n365, n%(&; = 1), n(B; = 1) ] =[H, + 0,(n™)] '[hs, + 0,(1)].

Because the limiting random vectors are continuous functions of W the result
will follow if H,;, H,, and H; are nonsingular with probability one. That H, is
nonsingular with probability one follows from Theorem 2.1.

The determinant of H, may be expressed as

det(Hy) = =, ja, VIV + 2, 4b u VIV, Vi

i, j%ij
+2, 5k Icijle'V'VkVI
= 2( iu uu)V

+ cross product terms,
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where the coefficients g, ;, b, ;, and ¢, 5, depend only on the constants {;}. Some
tedious algebra will verify that a,; + b;;; + ¢;;;; 7 0. The conditional distribution

of det(H,) given V; = v, i = 2,3, - - is the distribution of the random variable
AVE+ uVE+ vV2+ oV, where A and p,», @ depend only on y, and on
¥; Uy U3, ¢+ +, respectively. Since A # 0 the above random variable is nonzero

with probability one. Therefore, P {det(H,) # 0|V, V5, - - } = 1 and by integra-
tion one obtains the result for H,. The result for H; may be obtained in a similar
manner. []

COROLLARY 3.1. Let the assumptions of Theorem 3.2 hold. Then
-2

. o

®» 202 e hiH; 'h,,

() 0,0~ L WgH; ™, — W),

i) 0,0 e S H; b,

) 95 ~e S H; by — G WE - W W, + W),
) Ol > T WH; b, |

4. Simulation. Estimates of the percentiles of the ®-statistics are presented in
Table 4.1. For the finite sample sizes the ®-statistics were computed for samples
generated using the model (2.1), with e, ~ NID(0, 1) and Y, =Y _, = 0.

To estimate the percentiles of the limiting distributions of the test statistics we
use the method of simulation employed by Dickey (1976). Briefly the method
consists of approximating the sequence {y,}%., by the finite sequence {¥,}2,,
where ¥, = v, fori = 1,2, - - - , 14 and the remaining ¥, are chosen so that the first
eight moments of the two sequences are in very close agreement. Using the Monte
Carlo method sample distribution functions of the statistics are generated with the
¥; replaced by ¥; in the definitions of the W,. The percentiles were “smoothed” by
fitting a regression function to the original set of estimates.

The estimated standard errors for the estimated percentiles are generally less than
0.3 percent of the table entry for the limiting distributions and are generally less
than 1.2 percent of the table entry for the finite sample cases. Two hundred
thousand independent sample statistics were used in constructing the percentiles
for the asymptotic distributions. Details of the computations are given in Hasza
(1977).

5. Higher order processes. In this section we consider the pth order process
with two unit roots defined in (1.1). We shall outline the method for obtaining the
asymptotic distributions of parameters and test statistics. The discussion is
abbreviated and we refer the reader to the treatment of the pth order autoregressive
process with one unit root given in Fuller (1976, pages 373-382).
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TABLE 4.1

Empirical percentiles for test statistics.
n .50 .80 90 95 975 99
25 0.96 2.05 2.89 3.78 4.66 6.01
50 0.97 2.03 2.82 3.60 441 5.52
2,(2) 100 0.98 2.02 2.78 3.53 4.29 5.31
250 0.98 2,01 2.76 3.49 4.22 5.20
500 0.98 201 2.76 3.48 420 5.17
%) 0.98 2.01 2.75 347 4.18 5.14
25 2.56 444 578 7.17 8.61 10.55
50 2.58 4.30 547 6.61 71.76 9.22
100 2.58 424 533 6.36 7.38 8.65
?,(2) 250 2.59 420 525 6.23. 7.18 8.36
500 2.59 4.19 522 6.19 7.13 8.28
) 2.59 4.18 521 6.16 7.08 8.22
25 207 334 428 522 623 7.59
50 2.05 3.20 3.99 4.76 5.55 6.56
®,(3) 100 2.04 3.13 3.86 4.55 5.24 6.11
250 2.03 3.09 3.79 444 5.08 5.88
500 2.03 3.08 3.76 441 5.03 5.81
) 2.03 3.07 3.75 4.39 5.00 5.76
25 497 7.70 9.54 11.41 13.34 15.88
50 4.89 7.21 8.75 10.17 11.61 13.43
D,(2) 100 4.86 6.98 8.36 9.58 10.80 12.31
250 4.83 6.86 8.13 9.25 10.34 11.70
500 4.83 6.82 8.05 9.15 10.20 11.52
00 4.82 6.78 7.98 9.05 10.08 11.37
25 3.13 4.59 563 6.66 7.74 925
50 2.99 4.19 5.00 5.77 6.51 7.49
®,(4) 100 292 4.00 471 5.36 5.96 6.74
250 2.89 3.90 4.55 5.14 5.68 6.38
500 2.88 3.87 4.50 5.07 5.60 6.28
%) 2.87 3.84 4.45 5.01 5.54 6.21

Let A denote the difference operator and consider the following models:

(5.1) Y,= oY, + B AY,_, + 32206, A%Y,_ + e,

(52  ¥,=

(5.3) Y,=ps+ 03t + ayY,_ + B3AY,_, + 2;’:1283,' A2Yt—j +e,

o+ Y, + B AY, + 32206, A, +oe,

where the roots of

J

mP=2 — SP2, mP~r = 0
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are less than one in absolute value for i =1,2,3. Let & = (a;, 8, 8), & =
(125 @3, By, 83), and & = (3, 05, a3, B3, 83), where 8 = (85, 8,5, - « - , §; ,_,). Let

'P/41 = (Yt—l’ AYI-—I’ AzYt—l’ ] A2Yt—p+2)’
¥ = 1 Vi) and ¢, = 1 ‘l’a’tz)

Then the least squares estimators are

(54) éi = (21 i:‘l/ix)_lz'z'-l‘l’u Y,

It is noted that, for example, in model (5.1), the characteristic equation of Y, will
have two unit roots if and only if the true parameter values satisfy a; = 8, = 1. We
define test statistics 5131(2), &)2(2), @2(3), &)3(2), and <‘I'>3(4) (analogous to the likeli-
hood ratio F-statistic under a fixed normal model) for testing H, : (a;, 8;) = (1, 1),

t(ay B)=(, 1), Hy:(ppapB)=0(0 11, Hy: (a3, B3) =(1,1), and
: (M3 05, a3, B3) = (0, 0, 1, 1) respectively. These will be likelihood ratio tests
for the time series model when the e, are normally distributed and

Y—p+l’ Y—P+2’ A Y Yo are ﬁXCd.

Because Y, has characteristic roots m; = m, =1 and |m| <1 for j =
3,4,---,p, A%, is an autoregressive process of order p — 2 with characteristic
roots less than one in modulus We have
(5.5) = 32228, %Y, + ¢, t=12---

=0 t=—-p+3, —p+4,---,0,
where the roots of
(5.6) - 250 128 mP~r =0
are my, my, - - -+ , m,. Let ¢ = 1_18 and note that ¢ ~! 0 because 1 is not

a root of (5.6). We demonstrate that Y, behaves much like a multiple ¢ of the
second order process (2.1).

LemMA 5.1. Define {X,};= _, by
X,=X,_,+AX,_, + ¢ t=1,2,---
=0 =—1,0.
Then
D1tV (MY, ) ef = oS 1K (AKX, ) ef
+ Op(nl+3a/2+b/2+d_8/2),

where a, b, d, g are nonnegative integers withg < 1 <a + b + d + g < 2. Further-
more,

Tm1Yio 1A2Y = Op(”z) Jj=12---,p—2
S AY, A%, = 0,(n) j=1,2,---,p—2.
ProoF. We have
X, =Y, -38Y, t=-10,--
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Therefore,
X, = c7'Y, - Z208(Y, - ¥,

j =1
= 7YY, - B2 T AT,
Then, for example,

n n - - 1 2
0 CRED P AR ¥t SV Ay
= ¢TI YR + O,(n)
because terms of the form 27_,Y,_|AY,_,_,and 3"_AY, , AY, ,_, are O,(n%)

and Op(nz) respectively. Similar techniques may be used to establish the other
results. []

With Theorem 5.1 we establish the limiting behavior of the least squares
estimators of the parameters of (5.1), (5.2) and (5.3).

THEOREM 5.1. Let the assumptions and definitions of this section hold and let H,
and h; be defined as in Section 3. Let 6~,, i =1, 2, 3, be the p — 2 dimensional vector
given by the last p — 2 ele~ments of &; of (5.4). Then

M [en¥@ — 1, on(fy — DY ~eHi ',

@) [ cn¥(@ — 1), en( B, — 1)) —gHy 'hy,

(i) [n2fis, n30s, cn®(d; — 1), cn( B — 1)) >¢H3 'hy,

@iv) n%(gj — 8) =¢N,_,(0, o’ I'™Y) for j = 1,2, 3, where the elements of T are
given by

I‘,j = lim,_m COV(AZY,, A2Y¢+|j—j|)'

Proor. We considef model (5.3). Let G, = 2}_ Y6 ¥ and let the (p +2) X
(p + 2) diagonal matrix

D, = diag{nil, n%, n? n, n%,- n%, cee, n%}.
The normalized error in the least squares estimator of the parameters of model
(5.3) is
D, - &) = D,G, e,
=[p;'6,D;']7'D; e,

where g, = 2. e e
Using the results of Lemma 5.1

D;'G,D;! —>E(CH3C "),

0 r

where C = diag(l, 1, ¢, ¢}. Also diag{n™?, n3 n72 nm NS e, St te,
r_1Y,_ e, 25.AY,_e) —:Ch;. The result is then obtained by applying the
results of Section 3 and the well-known limiting distributional theory for least
squares estimators for processes with roots less than one in modulus. []
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COROLLARY 5.1.  The limiting distributions of ®,(2), 8,(2), ®,(3), ®(2), and d,(4)
are those given in Corollary 3.1 for ®,(2), ®,(2), ®,(3), D;(2), and ®,(4) respectively.

Because of Corollary 5.1, Table 4.1 may be used to test the respective hypotheses
in the pth order autoregressive process.

6. Comments. In our discussion, Y_,., Y_, .5 - - -, ¥, are fixed, both un-
der the null model and under the alternative model. The tests we have presented
are likelihood ratio tests (for normal e,) under such a model. The tests are not
likelihood ratio and not the most powerful that can be constructed if, for example,
the alternative model is that (Y_,,, Y_,,, * - -, Y,) is a portion of a realization
from a stationary autoregressive process. If it is desired to use these tests when the
alternative model is that associated with (5.2) or (5.3) with all roots of the
characteristic equation less than one in absolute value or p — 1 roots less than one
in absolute value and one root equal to one in absolute value, tests ®,(2) and ®,(2)
are recommended over ®,(3) and ®4(4) on the basis of power.

The models (3.2) and (3.3) permit testing against expanded classes of alternative
models. In all cases the tabulated distributions are for the null model

Y,=2Y,_, - Y, ,+e
with Y_, = ¥, = 0. The limiting distribution does not depend upon the initial
conditions (Y_,, ¥,) but these values will influence the small sample distributions.

It can be shown that

,(2) *B%X%
when u, # 0 and that

&’3(2) "’BEIX22
when 8, # 0. Therefore, if 1, 7 0 and a, = B, = 1 the probability is greater than
that tabled that the statistic ®,(2) will accept the hypothesis that a, = 8, = 1. The
limiting distribution of ®,(2) has been obtained for the case p, 0 and 6, = 0. A
Monte Carlo study demonstrated that if p, # 0, §; = 0, and ®,(2) is used to test
the hypothesis that a; = B8; = 1 the hypothesis will be accepted with greater
probability than that tabled.

7. Example. Box and Jenkins (1976, page 528) list 226 consecutive tempera-
ture readings on a chemical process. The readings were taken at one minute
intervals. The following equations were fitted by least squares:

(7.1) Y, = 02747 + 0.0001:+ 09876Y,_,+ 0.8152(Y,_, — Y,_,) S?=0.0175,
(0.1024) (0.0001) (0.0044)  (0.0383)

(7.2) Y, = 0.2766 + 0.9876Y,_,+ 0.8151(Y,_, — ¥,_,) 52 = 0.0174,
(0.1006) (0.0044)  (0.0383)

(7.3) Y, - Y,_, = 0813(Y,_, — ¥,_,) S2 = 0.0180.
(0.038)
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The numbers in parentheses are estimated standard errors calculated by the
usual regression formulas used in most computer regression routines. From (7.1) we
calculate ®,(2) to test the hypothesis that the time series was generated by an
autoregressive process with two unit roots. The calculated value of ®,(2) = 16.68 is
compared with the tabulated value of 11.70 for n = 250 and the null hypothesis is
rejected at the .01 level.

From (7.2) we calculate the “z-type” test statistic to test the hypothesis that
a, = 1, that is, that the second order autoregressive process has one unit root
assuming the other root is less than one in absolute value. We have 7, = (0.9876
— 1)(0.0044)~! = — 2.82. The percentiles of this test statistic when the process has
one unit root are given in Table 8.5.2 of Fuller (1976). We have P{7, < — 2.88} =
0.05. To summarize, we conclude that the model with two unit roots is not
compatible with the observed time series, while the model (7.3) with a single unit
root is also suspect.
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