Abstract
For predicting $\int_G v(x)Z(x)dx$, where v is a fixed known function and Z is a stationary random field, a good sampling fesign should have a greater density of observations where v is relatively large in absolute value. Designs using this idea when $G = [0, 1]$ have been studied for some time. For G a region in two dimensions, very little is known about the statistical properties of cubature rules based on designs with varying density. This work proposes a class of designs that are locally parallelogram lattices but whose densities can vary. The asymptotic variance of the cubature error for these designs is obtained for a class of isotropic random fields and an asymptotically optimal sequence of cubature rules within this class is found. I conjecture that this sequence of cubature rules is asymptotically optimal with respect to all cubature rules.
Citation
Michael L. Stein. "Locally lattice sampling designs for isotropic random fields." Ann. Statist. 23 (6) 1991 - 2012, December 1995. https://doi.org/10.1214/aos/1034713644
Information