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LOCALLY LATTICE SAMPLING DESIGNS FOR ISOTROPIC
RANDOM FIELDS1

BY MICHAEL L. STEIN

University of Chicago

Ž . Ž .For predicting H v x Z x dx, where v is a fixed known function andG
Z is a stationary random field, a good sampling design should have a
greater density of observations where v is relatively large in absolute

w xvalue. Designs using this idea when G s 0, 1 have been studied for some
time. For G a region in two dimensions, very little is known about the
statistical properties of cubature rules based on designs with varying
density. This work proposes a class of designs that are locally parallelo-
gram lattices but whose densities can vary. The asymptotic variance of the
cubature error for these designs is obtained for a class of isotropic random
fields and an asymptotically optimal sequence of cubature rules within
this class is found. I conjecture that this sequence of cubature rules is
asymptotically optimal with respect to all cubature rules.

1. Introduction. This work studies sampling designs for predicting inte-
grals of a stationary, isotropic random field Z in two dimensions. Specifically,

Ž . Ž .consider predicting H v x Z x dx for v a fixed known smooth function and GG
a bounded region of integration. Lattice-based designs have certain desirable
properties, not the least of which is that their properties can be studied using
spectral means. However, designs using a fixed lattice throughout G are
inefficient when v is not constant, since it is better to have a greater density

< Ž . <of observations where v x is relatively large. Here, I introduce designs and
corresponding cubature rules that are locally parallelogram lattices but
whose densities vary with x. By a parallelogram lattice I mean any lattice
that can be obtained by linearly transforming a square lattice. The equilat-
eral triangular lattice is a special case of a parallelogram lattice and will be of

Ž < <.particular importance here. For Z with spectral density f satisfying g v s
Ž .f v , where g is regularly varying with exponent yp, 2 - p - 4, I obtain the

asymptotic mean squared error for these cubature rules and give asymptoti-
cally optimal cubature rules within this class of locally lattice designs.
Furthermore, I conjecture that these rules, which are based on designs that
are locally an equilateral triangular lattice, are asymptotically optimal with
respect to all cubature rules based on point evaluations of Z.
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Since useful finite sample results are difficult to obtain, nearly all theoreti-
cal work on stochastic evaluation of cubature errors is asymptotic. Some early

Ž . Ž .work on this problem was done by Quenouille 1949 , Matern 1960 and´
Ž .Dalenius, Hajek and Zubrzycki 1961 . All of these authors considered pre-´

Ž .dicting H Z x dx and letting G grow with the number of observations, whatG
Ž . Ž .Cressie 1993 calls increasing-domain asymptotics. Matern 1960 found that´

equilateral triangular lattice designs work well for many isotropic processes.
Ž .Dalenius, Hajek and Zubrzycki 1961 showed that there are isotropic pro-´

cesses for which other lattices perform better asymptotically than the equilat-
eral triangular lattice.

A different asymptotic approach and the one used here is to fix the region
of integration G and to increase the density of observations as their number

Ž .increases. Cressie 1993 calls this infill asymptotics, although fixed-domain
asymptotics is perhaps a good alternative name to highlight the contrast with
increasing-domain asymptotics. Note that while statisticians first studied
increasing-domain asymptotics, this approach is quite unnatural for a numer-
ical analyst who thinks in terms of some fixed integral to approximate.
Indeed, I am unaware of any work in the numerical analysis literature that

Ž .uses increasing-domain asymptotics. Tubilla 1975 appears to be the first to
have studied the error variance of various sampling designs for predicting

Ž . Ž .H Z x dx using fixed-domain asymptotics. Schoenfelder and Cambanis 1982G
Ž .and Schoenfelder 1982 considered the more general problem of predicting

Ž . Ž .H v x Z x dx. These works show that in two or more dimensions, stratifiedB
designs can yield better predictions than systematic designs if Z is suffi-

Ž .ciently smooth. Stein 1993, 1995a showed that the problem with centered
systematic sampling designs for Z smooth and G the unit cube is that the
coefficients used in simple integration rules do not handle boundary effects
well and that by adjusting the coefficients near the boundary, systematic
designs do at least as well as stratified designs.

Section 2 provides some background on deterministic and stochastic ap-
proaches to evaluating cubature rules. Section 3 defines a class of cubature
rules based on locally lattice designs and obtains their asymptotic mean
squared error. Section 4 gives an asymptotically optimal sequence of rules
within this class and discusses the evidence for believing this sequence is
asymptotically optimal with respect to all rules. Section 5 discusses some
alternative systematic designs.

2. Background. This section reviews some basic concepts of determinis-
tic and stochastic approaches to defining optimal and asymptotically optimal

wcubature formulae. The standard deterministic approach Levin and
Ž .xGirshovich 1979 is to choose some class of functions H on some set G and

then consider for h g H, an n-point cubature rule of the form

n

L h; X , C s c h x ,Ž . Ž .Ý k k
ks1
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Ž . Ž .where X s x , . . . , x , each x g G and C s c , . . . , c . The cubature error1 n i 1 n
is

e h; X , C s h x dx y L h; X , C .Ž . Ž . Ž .H
G

Note that X and C are not allowed to depend on the particular h in H
selected. The quality of a cubature rule is measured by

< <e H ; X , C s sup e h; X , C .Ž . Ž .
hgH

Ž U U .An n-point cubature rule X , C is called optimal among all n-point rules if

e H ; XU , CU s inf e H ; X , C ,Ž . Ž .
Ž .X , C gAn

where A s Gn = R n. In some circumstances, it may be desirable to allown
observations outside of G, in which case, we would take A s F n = R n,n
where F is some set containing G. We can also consider optimizing just over

Ž .C, the coefficients, taking X as fixed. Following Davis and Rabinowitz 1984 ,
I will call CU relatively optimal if, for given X g Gn,

e H ; X , CU s inf e H ; X , C .Ž . Ž .
nCgR

To define asymptotic optimality of cubature rules, we need to consider
sequences of rules. In some constructions of sequences of rules, it may be
difficult to obtain rules based on exactly n points for any given n. Thus, I will

�Ž .4consider a sequence of rules X , C , n s 1, 2, . . . , such that N , then n n
number of points in rule n, tends to infinity as n ª `. This sequence of rules
is called asymptotically optimal if

e H ; X , CŽ .n n
lim s 1.

inf e H ; X , Cnª` Ž .Ž X , C .g ANn

For a fixed sequence of designs X , X , . . . with N points in X , I will call1 2 n n
C , C , . . . asymptotically relatively optimal if1 2

e H ; X , CŽ .n n
inf s 1.

Ninf e H ; X , Cnª` Ž .nC g R n

In comparing the asymptotic performance of different sampling designs, it is
important to keep in mind whether or not the corresponding coefficients are
asymptotically relatively optimal. For example, consider a sequence of parti-
tions of G where the largest diameter of the elements of the nth partition
tends to 0 as n tends to infinity. Define the nth in a sequence of systematic
designs by placing an observation at the center of mass of each element of the
nth partition. Define the corresponding nth stratified design by placing one

Ž .observation randomly in each element of the nth partition. Tubilla 1975 and
Ž .Schoenfelder 1982 show that for partitions of the unit square into a lattice

Ž .of squares Schoenfelder also considers more general partitions and using
naively chosen coefficients, systematic designs can have a slower rate of
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Ž .convergence than the corresponding stratified designs. Stein 1993, 1995a
demonstrates that this apparent superiority of stratified designs disappears if
asymptotically relatively optimal coefficients are used with the systematic
designs. More generally, I conjecture that under mild conditions on Z and the
sequence of partitions, systematic designs will do at least as well asymptoti-
cally as the corresponding stratified designs if asymptotically relatively opti-
mal coefficients are used.

The choice of H has a profound effect on which cubature rules are judged
good; see Section 5 for some further discussion. Because the focus in this
paper is on isotropic processes, I will only mention here classes H that have

Ž .some sort of invariance under rotations. For example, Babenko 1977 ob-
tained asymptotically optimal cubature rules for two-dimensional integrals

< Ž . Ž . < Ž < <.with H the class of functions h satisfying h x y h y F c x y y , where c
< <is a modulus of continuity and x y y indicates Euclidean distance between x

and y. Due to their close relationship to the stochastic measures of good
rules, classes of functions defined by bounds on Sobolev norms have a closer

w Ž .xconnection to this work Wahba 1990 . An example of such a space for
G ; R2 is all functions satisfying

1rqqmm m2.1 h x , x dx F 1,Ž . Ž .ÝH 1 2a myaž /a  x  xG 1 2as1

Ž .where x s x , x . In statistical settings, only the case q s 2 has been1 2
considered. A generalization of particular relevance here is classes of func-

Ž . Ž .tions of the form v x h x , where v is fixed and known everywhere on G and
Ž . Ž .h satisfies a constraint such as 2.1 . Polovinkin 1989 studies classes of

functions of this form and derives certain properties that asymptotically
optimal rules must possess without actually finding such rules.

The stochastic approach used here considers the function being integrated
a random field with finite second moments. The quality of a cubature rule
Ž . Ž .X,C is measured by its mean squared error and relative optimality and

Ž .asymptotic relative optimality are defined using obvious analogs to their
Ž .definitions in the deterministic case. Sacks and Ylvisaker 1971 note the

close connection between the stochastic and deterministic approaches when
the space of deterministic functions is a Hilbert space with a reproducing

w Ž .xkernel Wahba 1990 . Specifically, if Z has mean identically 0,

2 22.2 E e Z ; X , C s e H ; X , C ,Ž . Ž . Ž .

where H is made up of the elements of a Hilbert space whose norms are at
most 1 and the reproducing kernel of the Hilbert space is the covariance

w xfunction of Z. For example, if G s 0, 1 and H is the set of absolutely
w x 1w XŽ .x2continuous functions h on 0, 1 for which H h t dt F 1, then the repro-0

Ž . Ž .ducing kernel is proportional to min s, t so that Z in 2.2 can be taken to be
Ž .Brownian motion. For the space of functions given by 2.1 with q s 2, the

corresponding reproducing kernel has spectral ‘‘density’’ proportional to
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< <y2 mv . Note that this function is not integrable in a neighborhood of the
Ž .origin, which is related to the fact that 2.1 only defines a seminorm and not

w Ž . xa norm see Wahba 1990 for further details . For our purposes, only the high
frequency behavior of the spectral density matters, so I will ignore this point

Ž .here. Since m is an integer, we see that there is no overlap between 2.1 and
Ž < <. Ž .the class of spectral densities studied here, for which g v s f v is regu-

larly varying with exponent yp, 2 - p - 4. Even if the restriction to m an
Ž .integer is removed in 2.1 , which is most conveniently done by considering

the reproducing kernel or its spectral density directly, the classes of functions
one obtains is still in some ways more narrow than I consider here. In

Ž .particular, only requiring g, as in Stein 1993 , to be regularly varying allows
Žconsideration of many processes or, equivalently, many reproducing kernel

.Hilbert spaces that have not, to my knowledge, been studied in the cubature
literature using deterministic error bounds.

Ž . Ž .3. Main results. Consider predicting H v x Z x dx for v and G suffi-G
ciently well behaved and Z a stationary isotropic random field. It is plausible
that a good design should place more observations in areas of G for which
< Ž . < Ž .v x is relatively large. Sacks and Ylvisaker 1971 , Eubank, Smith and

Ž . Ž . Ž . Ž .Smith 1981 , Cambanis 1985 , Benhenni and Cambanis 1992 , Stein 1995b
Ž .and Pitt, Robeva and Wang 1995 studied this problem for one-dimensional

Ž .integrals. In particular, Sacks and Ylvisaker 1971 and Eubank, Smith and
Ž .Smith 1981 showed that systematic designs of varying density yield asymp-

totically optimal quadrature rules in some circumstances. Thus, one might
expect an appropriate systematic design of varying density to provide asymp-
totically optimal cubature rules for multidimensional integrals. Other than

Ž . Ž .some work by Schoenfelder 1982 extending results of Tubilla 1975 , there
does not appear to be any theoretical work on the mean squared error of
cubature rules based on systematic designs of varying density for isotropic

Ž .processes. Ylvisaker 1975 obtained some intriguing results on systematic
designs for a class of anisotropic processes, but I will argue in Section 5 that
these results depend critically on the nature of the anisotropy and so are not
helpful for studying isotropic processes. Using deterministic error bounds,

Ž .Babenko 1976 obtained asymptotically optimal cubature formulae for inte-
Ž . Ž .grals of the form H v x h x dx, where v is a fixed function and h is in aG

class of functions defined using a modulus of continuity constraint. While
Babenko’s results cannot be applied here, the basic approach can be. Specifi-
cally, partition G into regions on which v is nearly constant and then use a
lattice design within each of these regions, the density of the lattice depend-
ing on the value of v in the region. The basic obstacle to obtaining an analog
to Babenko’s results here is that an asymptotically optimal design in the case
Ž .v x ' 1 is not known. Still, a reasonable conjecture is that for a large class

of isotropic processes cubature formulae based on equilateral triangular
lattices are asymptotically optimal for the constant v case, which, combined

Ž .with Babenko’s 1976 approach, yields in turn a reasonable conjecture for
asymptotically optimal procedures for v not constant.
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To describe these cubature formulae, I will first consider the case where
the design is locally a square lattice; results for other parallelogram lattices
follow by a linear transformation of the coordinates. Let f be a continuous

Ž .positive function bounded away from 0 on G with H f x dx s 1; this func-G
tion will give the local density of observations. Define a sequence of designs
indexed by n as follows. Let w be a sequence of positive reals satisfyingn
w ª 0 and w n1r2 ª ` as n ª `. For design n, partition R2 into a lattice ofn n
squares of side w with corners at w J, J g Z2. Define S to be the squaren n J
with upper right corner at w J, R s S l G and r s H dx. For r ) 0,n J J J R JJ

place points in R by dividing S into an m = m lattice of squares, whereJ J J J

1r2r nJ
3.1 m s w .Ž . J n½ 5H f x dxŽ .R J

Note that m ) 0, for all n sufficiently large, since w n1r2 ª `. Let R beJ n JP
the intersection of G with the square of side w my1 in R with upper rightn J J

� Ž . y1 4 � 42corner at w J y 1, 1 q m P , for P g 1, . . . , m . Furthermore, let cn J J JP
be the center of mass of R and r its area. Then design n is the set ofJP JP
c ’s for which the corresponding r ’s are positive. See Figure 1 for anJP JP
example of such a design. Consider the cubature formula

ˆ ˆ3.2 Z s Z J ,Ž . Ž .Ýn n
J

where

Ẑ J s v c r Z c .Ž . Ž . Ž .Ýn JP JP JP
P

The number of points in design n, denoted by N , satisfies ny1N ª 1. Noten n
that some design points may not be in G, which could be undesirable in some
circumstances. However, if G is convex, then all design points are always
in G.

Next consider conditions on the random field Z. If v and the mean function
of Z have bounded second partial derivatives on R2, then it is easy to show

ˆ y2Ž .that the squared bias of Z is O n . Under the conditions of Theorem 1, then
squared bias will then be asymptotically negligible relative to the variance.
Thus, from now on I will only consider the variance of the cubature error and
ignore the bias. Assume Z is isotropic with spectral density f of the form
Ž . Ž < <. Ž < <.f v s g v . The covariance function for Z is C x , where C is given by the

Bessel transform

`

C t s 2p J tn n g n dn .Ž . Ž . Ž .H 0
0

The critical condition needed here to obtain the asymptotic variance of the
cubature error is

3.3 g is regularly varying at ` with exponent yp, 2 - p - 4.Ž .
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w xFIG. 1. Example of locally square lattice design with G a trapezoid with vertices at 0, 0 ,
1w x w x w x1.5, 0 , 0, 1 and 1, 1 , w s and m s 2, m s 3, m s 4, m s 3, m s 4 andn Ž1, 1. Ž2, 1. Ž3, 1. Ž1, 2. Ž2, 2.2

m s 3.Ž3, 2.

w Ž . xIt follows see Theorem 1 of Bingham 1972 , where his a s p y 2 that

3.4 C 0 y C t s O ty2 g ty1 as tx0.Ž . Ž . Ž . Ž .Ž .

THEOREM 1. For G a compact Jordan-measurable subset of R2, f continu-
Ž .ous and bounded away from 0 on G and H f x dx s 1, v having boundedG

partial derivatives through order 3 on R2 and Z a stationary random field on
2 Ž .R with covariance structure satisfying 3.3 ,

y11r2 ˆg N var v x Z x dx y ZŽ . Ž .Ž . Hn nž /G

Xyp2yp 2 yp< <ª 2p v x f x dx K ,Ž . Ž . Ž . ÝH
G K

where ÝX means to sum over all elements of Z2 except the origin.

PROOF. The following result, proven in Appendix A, is helpful:

LEMMA 1. For g regularly varying with exponent yp, 2 - p - 4, there
Ž . Ž .exists a function g that is ultimately monotone with g t rg t ª 1 as t ª `˜ ˜

and that, for any given positive integer q and finite T, there exists a constant
b with

Ž̃q . y2yq y1< <3.5 C t F b t g t for 0 - t F T ,Ž . Ž . Ž .˜

˜ `Ž . Ž . Ž .where C t s 2pH J tn n g n dn .˜0 0
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Ž .For now, assume we can take g s g in 3.5 . Define˜

ˆ ˆcov s cov v x Z x dx y Z J , v x Z x dx y Z K .Ž . Ž . Ž . Ž . Ž . Ž .H HJK n nž /R RJ K

The basic outline of the proof is to show

3.6 g n1r2 cov ª 0 as n ª `Ž . Ž . Ý JK
J/K

and then to handle Ý var where var s cov , using methods in SteinJ J J J
Ž .1995a . The following result will be helpful: for any two Jordan-measurable

Ž Ž .subsets A and B of G with centers of mass a and b, « s max diam A ,
Ž .. Ž . � < < 4diam B and d s d A, B s inf x y y : x g A, y g B as defined, there ex-

ists a constant g independent of A and B such that

cov v x Z x y v a Z a dx ,� 4Ž . Ž . Ž . Ž .Hž A

v x Z x y v b Z b dx� 4Ž . Ž . Ž . Ž .H /B

3.7Ž .

y6 y18F g« max « , d g max « , d .� 4 � 4Ž . Ž .Ž .
Ž . Ž . < <Appendix B outlines a proof of 3.7 . To establish 3.6 , first consider J y K

Ž . y1r2 < <G 2. Then for all possible P and Q, d R , R G 5 w J y K , whereJP K Q n
Ž .the lower bound can be achieved if, for example, J y K s 2, 1 . Since

Ž . Ž y1r2 . Ž .diam R s O n uniformly in J and P, using 3.7 and m sJP J
Ž 1r2 .O n w uniformly in J,n

cov s cov v x Z x y v c Z c dx ,� 4Ž . Ž . Ž . Ž .Ý Ý HJK JP JPž RJPP : r )0 Q : r )0JP KQ

v x Z x y v c Z c dxŽ . Ž . Ž . Ž .� 4H K Q K Q /RKQ

y8 y6 y12 4 1r2 < < < << n w n w J y K g w J y K ,� 4 � 4Ž . ž /n n n

< <where a < b means a F cb for some constant c independent of n and any
other index such as J or K that can implicitly depend on n. Thus,

y1y6y2 y2 < < < <cov < n w J y K g w J y K� 4Ý Ý ž /JK n n
< < < <JyK G2 JyK G2

y1y6y2 y4 < < < << n w J g w J� 4Ý ž /n n
y1< <0- J -wn
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wy1 y1ny2 y4 y5< n w t g w t dtŽ .Ž .Hn n
1

3.8Ž .

wy1
ny2 3s n s g s dsŽ .H

1

< ny2 wy4 g wy1Ž .n n

s o g n1r2Ž .Ž .
w Ž . xusing Karamata’s theorem Bingham, Goldie and Teugels 1987 , page 28 to

obtain the penultimate step and p - 4 and n1r2 w ª ` for the last step.n
< < Ž .Next, consider those cases for which 0 - J y K - 2, such as J y K s 1, 0

Ž . Ž y2 . Ž .or 1, 1 . There are O w such cases. Suppose J y K s 1, 0 ; other casesn
Ž .are similar. Then using 3.7 ,

y32 2m mJ K j y l q k q mŽ . Ž .y4cov < n Ý ÝJK ž /nj, ks1 l , ms1

=
n1r2

g 1r22 2ž /j y l q k q mŽ . Ž .� 4
y32 2y1< n s y t q u q vŽ . Ž .� 4H

1r2 4w x1, w nn

=
n1r2

g ds dt du dv1r22 2ž /s y t q u q vŽ . Ž .� 4
y32y1r2 2< n w s q u q vŽ .� 4Hn

1r2 3w x1, w nn

=
n1r2

g ds du dv1r222ž /s q u q vŽ .� 4
n1r2

1r2 1r2w n w nn ny1r2 y2< n w r g dr dsH Hn ž /r1 s

n1r2
1r2w nny1r2 y1< n w s g dsHn ž /s1

< ny1r2 w g n1r2 ,Ž .n

so that

3.9 cov < ny1r2 wy1 g n1r2 s o g n1r2 .Ž . Ž . Ž .Ž .Ý JK n
< <0- JyK -2

Ž . Ž . Ž .Then 3.6 follows from 3.8 and 3.9 .
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Ž .Now consider var . By an argument similar to the one leading to 3.9 ,J

y62 2y1var < n s y t q u y vŽ . Ž .� 4HJ
1r2 4w x1, w nn

=
n1r2

g ds dt du dv1r22 2ž /s y t q u y vŽ . Ž .� 4
n1r2

1r2w nn2 y5< w r g drHn ž /r1

< w2 g n1r2 .Ž .n

Ž y2 .Since G is Jordan measurable, the number of S ’s partially in G is o w ,J n
so that

3.10 var s o g n1r2 .Ž . Ž .Ž .Ý J
R /SJ J

The terms for which S ; G can be handled by extending results in SteinJ
Ž . Ž .1993, 1995a to yield see Appendix C

p
12yp 2var s 2p v x dx f x dxŽ . Ž . Ž .H HJ ž /rS RJJ J3.11Ž .

=
X yp 1r2 2 1r2< <K g n q o w g n ,Ž . Ž .Ž .Ý n

K

Ž . Ž .where the remainder is small uniformly in J. Then 3.10 , 3.11 , w ª 0 andn
the conditions on f imply

Xy1 yp2yp 2 yp1r2 < <g n var ª 2p v x f x dx KŽ . Ž . Ž . Ž .Ý ÝHJ
G K

Ž . y1as n ª `, which in conjunction with 3.6 and n N ª 1 yields the theoremn
Ž .when we can take g s g in 3.5 .˜

The proof for more general g follows using an idea of Pitt, Robeva and
Ž . Ž .Ž .Wang 1995 . Specifically, given « ) 0, we can choose T such that g t 1 y «˜

Ž . Ž .Ž . Ž . Ž .F g t F g t 1 q « , for t G T. Define g t to be g t on 0 - t - T and 0˜ T
Ž .Ž . Ž . Ž . Žotherwise. Define g similarly. Then g t 1 y « y g t F g t F 1 q˜ ˜ ˜T T

. Ž . Ž .« g t q g t , for all t. Using a subscript on a variance to indicate the˜ T
isotropic spectral density under which the variance is computed and setting

ˆŽ . Ž .e s H v x Z x dx y Z ,n G n

1 y « var e y var e F var e F 1 q « var e q var e .Ž . Ž . Ž . Ž . Ž . Ž . Ž .g n g n g n g n g n˜ ˜T T

w .Because g has bounded support, its Bessel transform is analytic on 0, `T
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and it follows by a straightforward argument using Taylor series that

var v x Z x y v c Z c dx s O ny4 ,� 4Ž . Ž . Ž . Ž . Ž .Hg JP JPT ž /RJP

Ž . Ž y2 . Ž Ž 1r2 ..which implies var e s O n , which is o g n since p - 4. Similarly,g nT

Ž . Ž y2 .var e s O n . Thus,g n˜T

var e var eŽ . Ž .g n g n
1 y « F lim inf F lim sup F 1 q « .

var e var enª` Ž . Ž .nª`g n g n˜ ˜

Ž .Since « is arbitrary Theorem 1 holds for all g satisfying 3.3 . I

We can obtain a similar result for nonsquare lattices by linear transforma-
tion. For a 2 = 2 matrix B with determinant 1, let the rows of B determine
the lattice structure. Specifically, let the corners of a lattice of parallelograms
be given by w BJ, J g Z2. Call S the parallelogram with upper right cornern J
at w BJ and set R s S l G and r s H dx as before. For r ) 0, dividen J J J R JJ

S into an m = m lattice of parallelograms, where m is defined as inJ J J J
Ž .3.1 . Place observations at the centers of mass of the nonempty intersections

ˆ Ž .of these parallelograms with G and define Z as in 3.2 . Under the samen
conditions on g, G, v, f and w as in Theorem 1, a straightforward extensionn
of that result gives

Xy1 yp2yp 2 y1 ypX1r2 < <3.12 g N var e ª 2p v x f x dx B K .Ž . Ž . Ž . Ž . Ž . Ž .Ž . ÝHn n
G K

4. Possibly asymptotically optimal cubature formulae. The three
elements of the cubature formulae described in Section 3 that we need to

Ž .choose are w , f and B. Equation 3.12 provides no guidance on choosingn
w ; any sequence satisfying w ª 0 and w n1r2 ª ` yields the same asymp-n n n

Ž .totic result. Regarding f and B, note that 3.12 factors into two terms: one
depending only on f; the other only on B. Thus, to minimize the right-hand

Ž .side of 3.12 , it suffices to minimize each of these two terms separately. The
Ž .2 Ž .yp Ž .minimizer of H v x f x dx subject to H f x dx s 1 is given by Holder’s¨G G

inequality:

< < 2rŽ pq1. < < 2rŽ pq1.4.1 f x s v x v y dy.Ž . Ž . Ž . Ž .H0
G

If we want Theorem 1 to hold for f , we need to require that v is bounded0
X <Ž X.y1 <ypaway from 0 on G. Now consider Ý B K . The function

X ysX< <Z s s J AJ ,Ž . ÝA

where A is a symmetric nonsingular 2 = 2 matrix, is known as the Epstein
w Ž .xzeta-function Rankin 1953 . This sum converges for all s ) 1. For any

Ž .s ) 1, the global minimum of Z s with respect to symmetric A withA
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determinant 1 is achieved by

2 1 1r2
A s ,1r2 1r2 13

Ž . Ž .which was proven for s ) 1.035 by Rankin 1953 and by Cassels 1959 ,
Ž . Ž .Ennola 1964a and Diananda 1964 for 1 - s - 1.035. It follows that for

X <Ž X.y1 <ypp ) 2, to minimize Ý B K with respect to B with determinant 1, we
can use an equilateral triangular lattice

21r2 1r21r 2 ? 3 y1r2Ž .4.2 B s ,Ž . 0 1r4 ž /3 0 1

Ž .or any orthogonal rotation of this. Sobolev 1974, 1992 was the first to
recognize the relevance of the Epstein zeta-function to the error analysis of
cubature formulae based on lattice designs, although he did not consider
lattices of varying density. I conjecture that the sequence of cubature rules
ˆ Ž . Ž .Z defined as in Section 3 with f given by 4.1 and B given by 4.2 isn 0 0

˜� 4asymptotically optimal in the following sense. Suppose Z is a sequence ofn
˜ ˜cubature rules where rule n is based on N observations with N F N , forn n n

all n sufficiently large. Furthermore, suppose v, g and G satisfy the condi-
tions of Theorem 1 and v is bounded away from 0. Then I conjecture

˜var H v x Z x dx y ZŽ . Ž .Ž .G n
4.3 lim inf G 1.Ž . ˆnª` var H v x Z x dx y ZŽ . Ž .Ž .G n

What I have proven is that among all rules of the form described in Section 3,
f and B yield an asymptotically optimal sequence of rules. Furthermore,0 0

Ž .considering Proposition 4.2 of Stein 1995a , I would expect the coefficients for
this sequence of rules to be asymptotically relatively optimal, although I
cannot prove this.

The fact that the asymptotic variance factors into a term depending on the
density and another on the lattice makes it easy to study each term’s impact.

Ž .From Theorem 1 and 4.1 we have that the ratio of the asymptotic variances
using constant f to the optimal f is

2H v x dxŽ .G
.pq12rŽ pq1.< <H v x dxŽ .� 4G

Thus, the improvement in using the optimal f increases with, roughly
speaking, increasing variation in v and decreases with increasing p. Similar

w Ž .results hold for one-dimensional integrals Pitt, Robeva and Wang 1995 and
Ž .xStein 1995b . The asymptotic improvement using the optimal triangular

lattice rather than the square lattice is quite small. For example, if p s 3,
Ž . y< t <which holds if C t s e , then the reduction in the asymptotic variance due

to using a triangular lattice rather than a square lattice is less than 2%.
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Thus, the advantage to using triangular rather than square lattices is mainly
of theoretical interest.

As noted in Section 3, the main obstacle to proving the asymptotic optimal-
ˆ Ž .ity of Z is that in the case v x ' 1, it is only known that the equilateraln

triangular lattice is asymptotically optimal with respect to parallelogram
lattice designs and may not be asymptotically optimal with respect to all

Ž .possible designs. Babenko 1977 showed that if the class of functions being
< Ž . Ž . < Ž < <.considered is those h satisfying h x y h y F c x y y , where c is a

modulus of continuity, then a sequence of rules based on equilateral triangu-
lar lattices is asymptotically optimal with respect to all possible rules.
However, this result does not appear to be of any help here. The basic
problem is that bounds on cubature errors for classes of functions satisfying a
modulus of continuity constraint can be obtained by bounding the difference

Ž .between h x and h at its nearest observed location to x, which roughly
speaking, eliminates the difficult problem of computing covariances between
interpolation errors at different points.

Ž .5. Discussion. Even if the conjecture given in 4.3 is true, there is still
something unsatisfying about the sequence of proposed quadrature rules.
First, there is the issue of how to choose w . However, even if a sharpern
analysis yielded information on this question, there is still a problem. What
we would like to do is to vary the density of the lattice continuously, without
having to make sharp breaks in the lattice structure as I have done at the

w xboundaries of the S ’s. Indeed, in one dimension with G s 0, 1 , this is easilyJ
w Ž .xaccomplished using regular sequences of designs Sacks and Ylvisaker 1971 :
Ž .to obtain the design of size n, place points at F irn , for i s 1, . . . , n, where

Ž . Ž .F is a smooth cumulative distribution function with F 0 s 0 and F 1 s 1.
It is possible in limited circumstances to do something similar in two

dimensions. Think of G as a set of points in the complex plane and suppose C
is a conformal mapping from some set B onto G. If we place an equilateral
triangular lattice on B and map it into G using C, the resulting set of points
will look locally like an equilateral triangular lattice. Since every smooth

Ž . w Ž .conformal mapping or its conjugate is holomorphic in G Hille 1959 , page
x95 , we can restrict attention to holomorphic C. As the density of the lattice

on B increases, the density of points in a neighborhood of z in G becomes
< XŽ . < 2 y1proportional to h z , where h s C , which is well defined and holomor-

Ž .phic on G. Thus, for a given real-valued positive function f s, t , where s and
< XŽ . < 2 Ž Ž . Ž ..t are real, we want to find holomorphic h such that h z s f Re z , Im z .

This will be possible if and only if m s log f is harmonic on G, where the
wŽ . xonly if part is noted by Titchmarsh 1939 , page 120 and the if part follows

XŽ . Ž Ž . Ž ..by defining h x y iy s exp m x, y q il x, y , where l is the harmonic
w Ž . xfunction conjugate to m Carrier, Krook and Pearson 1966 , page 45 . For

Ž . s Ž . Ž .example, for G the unit square and f s, t s e r e y 1 , we can take C z s
ŽŽ . 2 .log e y 1 z r4 , where log takes its principal value. Figure 2 shows an

example of such a design where the distance between neighbors in the
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FIG. 2. Locally equilateral triangular lattice on the unit square with local density proportional
Ž . s Ž .to f s, t s e r e y 1 .

equilateral triangular lattice in B, the inverse image of G, is 0.05. To use this
design as a basis of a good cubature rule would require adjusting the
locations or the coefficients of the points near the boundary. Since the class of
harmonic functions is quite limited, this method will not be broadly applica-
ble. Furthermore, in three or higher dimensions, the class of conformal

w Ž . xmappings is extremely limited Carman 1974 , page 20 , so that unlike the
designs defined in Section 3, extensions to higher dimensions are not in
general possible.

An important limitation of Theorem 1 is the restriction to two dimensions
wŽ . xand to p - 4. The results in Stein 1995a , Section 4 suggest that Theorem

1 can be extended to p G 4 if the coefficients used in the cubature rule are
modified, although how to do this explicitly for irregular G is not so obvious.
As far as extensions to three or more dimensions, Theorem 1 does easily
extend to three dimensions if we make the restriction w ª 0 and w n1r3 ª `.n n
However, we still need p - 4, but since we must also have p ) 3 to have a
density, the class of models covered by such a result is not very interesting. If
we go to four or higher dimensions, then requiring p - 4 leaves us with
nothing, as p must be greater than the number of dimensions. Thus, to
obtain a meaningful extensions to more than two dimensions, we need to be
able to weaken the restriction on p.
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There is also an obstacle to extending the optimality result in Section 4 on
the Epstein zeta-function to more than two dimensions. Specifically, while the
Epstein zeta-function extends in the obvious way to higher dimensions, the
minimizing lattice is not known. Even in three dimensions, while Ennola
Ž .1964b shows that the well-known body-centered cubic lattice gives a local
minimum for all s, whether it gives a global minimum is not known.

Ž .Shushbaev 1989 studied the Epstein zeta-function in higher dimensions and
shows there can be more than one local minimum, but gives no results for
global minima.

Finally, it is important to note that parallelogram lattice designs will not
Ž .work well for all stationary random fields. For example, Ylvisaker 1975

Ž . Ž Ž . Ž .. Ž . Ž .showed that if x s x , x and cov Z 0 , Z x s C x C x , then lattice1 2 1 1 2 2
designs can be highly inefficient relative to tensor product designs. Delvos
Ž .1989 considered related designs from a deterministic perspective. Quasiran-

w Ž .xdom numbers and good lattice points Niederreiter 1992 can also be much
more efficient than parallelogram lattice designs for certain classes of func-
tions. However, the classes of functions considered in all of these works share
the common feature that their behavior depends crucially on the choice of
coordinate axes, a fact that perhaps has not been adequately appreciated. For
classes of functions that are isotropic in some sense, or whose anisotropy can
be removed by a linear transformation of coordinates, I suspect it will be hard
to improve on the locally lattice designs studied in Section 3. For spatial data,
where the choice of coordinate axes is often somewhat or completely arbi-
trary, models whose behavior depends strongly on such a choice, as in

Ž . Ž . wŽ . xYlvisaker 1975 , Delvos 1989 or Levin and Girshovich 1979 , Chapter 4 ,
are difficult to justify.

APPENDIX A

Ž . p Ž .PROOF OF LEMMA 1. If g t t ª a as t ª `, we can take g t s˜
Ž 2 .yp r2a 1 q t and obtain the result. The more general case can be handled

w Ž .using smoothly varying functions Bingham, Goldie and Teugels 1987 ,
xSection 1.8 . A positive function f defined on some neighborhood of infinity

Ž . Ž x . `varies smoothly with index a if h x s log f e is C and as x ª `,
XŽ . Žn.Ž .h x ª a , h x ª 0, for n G 2. We will write f g SR for such a function.a

w Ž .By the smooth variation theorem Bingham, Goldie and Teugels 1987 ,
x Ž . Ž .Theorem 1.8.2 , there exists g g SR such that g t rg t ª 1 as t ª ` and˜ ˜yp

Ž . wg t is monotone for t sufficiently large see the remark before Theorem 1.8.3˜
Ž .xof Bingham, Goldie and Teugels 1987 . So, it suffices to show g satisfies˜

Ž .3.5 .
Ž . Ž .Let r n s 2pn g n . Then it is trivial to show r g SR . Formally,˜ ypq1

XŽ . ` Ž . Ž .we have C t s H n J tn r n dn . To justify differentiating inside the inte-0 1
Ž . n Ž . Ž . Ž . Ž . X Ž .gral, let f t s H J tn r n dn , so that f t ª C t and f t sn 0 0 n n

n Ž . Ž .H J tn n r n dn , for all t G 0. For any given 0 - a - b - `, it suffices to0 1
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X Ž . ` Ž . Ž . w xshow that f t converges uniformly to H J tn n r n dn on a, b . This isn 0 1
obvious for p ) 5r2, but we need to be more careful for 2 - p F 5r2, since

` Ž . Ž .H J tn n r n dn does not converge absolutely. However, for n ) m, using0 1
Ž . Ž .9.2.1 of Abramowitz and Stegun 1964 ,

n
X X< <f t y f t s J tn n r n dnŽ . Ž . Ž . Ž .Hn m 1

m

1r2
n 2 3p 1

s cos tn y q O n r n dnŽ .H ½ 5ž / ž / ž /p tn 4 nm

1r2 n2 1 3p
1r2s sin tn y n r nŽ .½ 5ž / ž /p t t 4 m

n1 3p 1
Xy1r2y sin tn y n r n q r n dnŽ . Ž .H ½ 5ž /t 4 2m

n1
q O r n dn ,Ž .H1r2ž /t m

w x < XŽ . <which tends to 0 uniformly for t g a, b as m, n ª `, since r n g SRyp
Ž .by Proposition 1.8.1 of Bingham, Goldie and Teugels 1987 .

Next, integrating by parts,

`
XC t s J tn n r n dnŽ . Ž . Ž .H 1

0

`1
Xs J tn r n q n r n dn .� 4Ž . Ž . Ž .H 0t 0

Ž . XŽ .Since r n and n r n are in SR and hence regularly varying withypq1
Ž . Ž . XŽ .exponent yp q 1, 3.5 holds for q s 1 by applying 3.4 to tC t . Now we can

essentially repeat the argument to get the result for larger q. For example,

`1
Y XC t s y J tn r n q n r n dn� 4Ž . Ž . Ž . Ž .H 02t 0

`1
Xq J tn n r n q n r n dn� 4Ž . Ž . Ž .Ht 0

`1
Xs y J tn r n q n r n dn� 4Ž . Ž . Ž .H 02t 0

`1
X Y2q J tn r n q 3n r n q n r n dn ,� 4Ž . Ž . Ž . Ž .H 02t 0

Ž . 2 YŽ . Ž . XŽ . 2 YŽ .so that we can again apply 3.4 to t C t since r n , n r n and n r n are
all in SR . Iypq1
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APPENDIX B

Ž . Ž . Ž < <.PROOF OF 3.7 . Define D x s C x and use subscripts to indicate par-
tial differentiation, so that, for example,

 3

D x s D x ,Ž . Ž .j j j1 2 3  x  x  xj j j1 2 3

Ž . Ž .where x s x , x . It follows from 3.5 that1 2

< <yŽ2 qa . < <B.1 D x < x g x ,Ž . Ž . Ž .j ? ? ? j1 a

< <for all a and all 0 - x F T. For now, assume d ) « . Then

cov v x Z x y v a Z a dx , v x Z x y v b Z b dx� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hž /A B

s v x v y D x y y y v x v b D x y b� Ž . Ž . Ž . Ž . Ž . Ž .H
A=B

yv a v y D a y y q v a v b D a y b dx dy4Ž . Ž . Ž . Ž . Ž . Ž .B.2Ž .

s D a y b v x y v a dx v x y v b dx� 4 � 4Ž . Ž . Ž . Ž . Ž .H H
A B

3 2
8 y6 y1q D a y b F j , . . . , j q O « d g d ,Ž . Ž . Ž .Ž .Ý Ý j ? ? ? j a 1 a1 a

as1 j , . . . , j s11 a

where
a

F j , . . . , j s v x v y x y y y a q bŽ . Ž . Ž . Ž .ŁHa 1 a j j j j½ l l l l
A=B ls1

a a

yv x v b x y a y v a v y b y y dx dy.Ž . Ž . Ž . Ž . Ž . Ž .Ł Łj j j j 5l l l l
ls1 ls1

Now, since a and b are centers of mass of A and B,

B.3 v x y v a dx v x y v b dx s O « 8 .� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .H H
A B

Furthermore, for d ) « ,

B.4 F j , . . . , j s O « 8 ,Ž . Ž . Ž .a 1 a

for 1 F a F 3. For example, using the convention that any index appearing
twice in a product is summed over,

F j s v a v b q v a v b b y y q v a v b x y aŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .�H1 k k k k k k
A=B

qv a v b x y a b y yŽ . Ž . Ž . Ž .k l k k k k

1q v a v b x y a x y aŽ . Ž . Ž . Ž .k l k k l l2
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1q v a v b b y y b y y x y y y a q bŽ . Ž . Ž . Ž . 4 Ž .k l k k l l j j j j2

yv a v b q v b b y yŽ . Ž . Ž . Ž .� k k k

1q v b b y y b y y b y yŽ . Ž . Ž . 4 Ž .k l k k l l j j2

yv b v a q v a x y aŽ . Ž . Ž . Ž .� k k k

1 4q v a x y a x y y x y a q O « dy dxŽ . Ž . Ž . Ž . Ž .4k l k k l l j j2

s v a v b b y y x y aŽ . Ž . Ž . Ž .�H k k k j j
A=B

qv a v b x y a b y yŽ . Ž . Ž . Ž .k k k j j

qv a v b x y a b y y x y y y a q bŽ . Ž . Ž . Ž . Ž .k l k k l l j j j j

1q v a v b x y a x y a b y yŽ . Ž . Ž . Ž . Ž .k l k k l l j j2

1q v a v b b y y b y y x y a dy dxŽ . Ž . Ž . Ž . Ž . 4k l k k l l j j2

q O « 8Ž .
s O « 8 ,Ž .

Ž .again using that a and b are centers of mass. For d ) « , 3.7 follows from
Ž . Ž . Ž . Ž .B.1 ] B.4 . For d F « , 3.7 follows directly from 3.4 using

cov v x Z x y v a Z a dx , v x Z x y v b Z b dx� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hž /A B

yD 0 v x y v a dx v x y v b dx� 4 � 4Ž . Ž . Ž . Ž . Ž .H H
A B

< << sup D x y y y D 0 dy dxŽ . Ž . H
A=BŽ .x , y gA=B

< «y2 g «y1 « 4 ,Ž .
since the exponent of regular variation yp satisfies p ) 2. I

APPENDIX C

Ž . y1 ŽPROOF OF 3.11 . Consider S ; G. Define a s w m , r s ypa ,J J n J J J
.2pa and, for a function v,J

FF v ; v s v x e iv
X x dx ,Ž . Ž .HJ

SJ

2
Xy2VV v ; v s FF v ; v y a v c exp iv c ,Ž . Ž . Ž . Ž .ÝJ J J JP JP

P

C.1Ž .

Ž . Ž . Ž . Ž . Ž .so that var s Hf v VV v; v dv. Define u x s v x y v w J , suppressingJ J n
the dependence of u on J. Then

2C.2 VV v ; v F 2v w J VV v ; 1 q 2VV v ; u ,Ž . Ž . Ž . Ž . Ž .J n J J
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Ž . Ž . Ž .where VV v; 1 means to take v x ' 1 in C.1 . By direct calculation,J

4 2w v y1n 2C.3 VV v ; 1 < 1 q w vŽ . Ž . Ž .Ł ½ 5J n ja js1J

Ž .on r . A slight sharpening of Lemma 3.1 of Stein 1995a provides a boundJ
Ž .for the second term on the right-hand side of C.2 . Specifically, by inspecting

the proof of this lemma we have the following: if a function v on R d has
w x dpartial derivatives through order d q 1 on 0, 1 and D is a bound on the

w x dabsolute value of v and these partial derivatives on 0, 1 , then there exists a
constant C independent of v and m such that

XJ y h iv J y hŽ .
X ydv x exp iv x dx y m v expŽ . Ž . ÝH ž / ž /d m mw x0, 1 d� 41, . . . , m

2 d 2< <CD log m 1 q vŽ . Ž .
F 1 q ,2 d½ 5< <m Ł 1 q vŽ .js1 j

1 1 XdŽ . Ž .for v g ymp , mp , where h s , . . . , . By a linear transformation of2 2

coordinates, we get

4 2< <2w CD log m 1 q w vŽ . Ž .n J n1r2C.4 VV v ; u F 1 qŽ . Ž .J 2 2½ 5< <a Ł 1 q w vŽ .J js1 n j

Ž . Ž .on r . Then C.2 ] C.4 implyJ

8 42 < <w log m 1 q w vŽ . Ž .n J n
C.5 VV v ; v < qŽ . Ž .J 4 24 2a < <a Ł 1 q w vJ ž /J js1 n j

on r , from which it followsJ

82w log mŽ .n J y1 3f v VV v ; v dv < q g w q m g aŽ . Ž . Ž .� 4Ž .H J n J J4 4a aC.6Ž . r J JJ

s o w2 g n1r2 ,Ž .Ž .n

using g regularly varying at ` with exponent yp, 2 - p - 4 and a ny1r2
J

uniformly bounded away from 0, for all n sufficiently large. Next, by Parseval’s
relation,

< < 2 < < 2 < < 2FF v ; v dv < FF v ; 1 dv q FF v ; u dvŽ . Ž . Ž .H H HJ J
c c dr r RJ J

wn 24< q w q u x dxŽ .Hna SJ J

C.7Ž .

s o w2Ž .n



M. L. STEIN2010

and

< < 2 < < 2 < < 2FF v ; v dv s FF v ; v dv y FF v ; v dvŽ . Ž . Ž .H H HJ J J
d cr R rJ J

d 2 2s 2p v x dx q o w .Ž . Ž . Ž .H n
SJ

C.8Ž .

Ž .Using C.7 ,

X 2< <f v q 2pa K FF v q 2pa K ; v dvŽ . Ž .ÝH J J J
rJ K

X 2< < < << g a K FF v ; v dvŽ .Ž .Ý HJ J
crJK

C.9Ž .

s o w2 g n1r2 .Ž .Ž .n

Ž .Straightforward calculations and C.5 yield

X 2 1r2C.10 f v q 2pa K VV v ; v dv s o w g n .Ž . Ž . Ž . Ž .Ž .ÝH J J n
rJ K

Ž . Ž . Ž . Ž . Ž .Similar to the proofs of 2.5 and 3.1 in Stein 1995a , C.9 and C.10 imply

X 2 2 1r2< <C.11 var s f v q 2pa K FF v ; v dv q o w g n .Ž . Ž . Ž . Ž .Ž .ÝHJ J J n
rJ K

Ž . Ž . Ž . Ž .Finally, 3.11 follows from C.6 , C.8 , C.11 and

X 2 2f v q 2pa K y f 2pa K FF v ; v dv s o w g n ,Ž . Ž . Ž . Ž .Ž .ÝH J J J n
rJ K

Ž .where this last bound is proven using a similar argument to the proof of 2.5
Ž .of Stein 1993 . I
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