Open Access
Translator Disclaimer
June, 1977 An Entrance Law which Reaches Equilibrium
Steven Kalikow
Ann. Probab. 5(3): 467-469 (June, 1977). DOI: 10.1214/aop/1176995807

Abstract

This paper constructs a collection of probability vectors $\varphi_n$ for all $n\in\mathbf{Z}$ and a stochastic matrix $Q$ on a countable state space so that (1) $$Q(i, j) > 0 \text{for all} i, j$$, (2) $$\varphi_nQ = \varphi_{n+1} \text{for all} n\in\mathbf{Z}$$, (3) $$\varphi_n = \varphi_{n+1} \text{for all} n \geqq 0; _{\varphi-1} \neq \varphi_0$$.

Citation

Download Citation

Steven Kalikow. "An Entrance Law which Reaches Equilibrium." Ann. Probab. 5 (3) 467 - 469, June, 1977. https://doi.org/10.1214/aop/1176995807

Information

Published: June, 1977
First available in Project Euclid: 19 April 2007

zbMATH: 0381.60055
MathSciNet: MR433602
Digital Object Identifier: 10.1214/aop/1176995807

Subjects:
Primary: 60J10

Keywords: entrance law , Markov chain

Rights: Copyright © 1977 Institute of Mathematical Statistics

JOURNAL ARTICLE
3 PAGES


SHARE
Vol.5 • No. 3 • June, 1977
Back to Top