Abstract
If $n(x)$ is the standard normal density on $R^2$ and if $A = -A$ and $B = -B$ are convex subsets of $R^2$ then $$\int_{A\cap B}\mathbf{n}(x) d^2x \geqq (\int_A \mathbf{n}(x) d^2x)(\int_B \mathbf{n}(x) d^2x).$$
Citation
Loren D. Pitt. "A Gaussian Correlation Inequality for Symmetric Convex Sets." Ann. Probab. 5 (3) 470 - 474, June, 1977. https://doi.org/10.1214/aop/1176995808
Information