Translator Disclaimer
February, 1976 Convergence Rates for Branching Processes
Soren Asmussen
Ann. Probab. 4(1): 139-146 (February, 1976). DOI: 10.1214/aop/1176996193

Abstract

Almost sure estimates of the rate of convergence for the supercritical Galton-Watson process are obtained, e.g. $W - W_n = o(m^{-n/q})$ a.s. if and only if $E(Z_1^p \mid Z_0 = 1) < \infty$, where $1 < p < 2, 1/p + 1/q = 1$. Extensions to the multitype and continuous time cases are outlined.

Citation

Download Citation

Soren Asmussen. "Convergence Rates for Branching Processes." Ann. Probab. 4 (1) 139 - 146, February, 1976. https://doi.org/10.1214/aop/1176996193

Information

Published: February, 1976
First available in Project Euclid: 19 April 2007

zbMATH: 0329.60053
MathSciNet: MR391286
Digital Object Identifier: 10.1214/aop/1176996193

Subjects:
Primary: 60J80
Secondary: 60J85

Rights: Copyright © 1976 Institute of Mathematical Statistics

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.4 • No. 1 • February, 1976
Back to Top