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CONVERGENCE RATES FOR BRANCHING PROCESSES

BY SGREN ASMUSSEN
University of Copenhagen
Almost sure estimates of the rate of convergence for the supercritical
Galton-Watson process are obtained, e.g. W — W, = o(m™/9) a.s. if and

only if E(Z;?|Zy = 1) < oo, where 1 <p <2, 1/p + 1/g=1. Extensions
to the multitype and continuous time cases are outlined.

1. Introduction. Let Z,, Z,, - .. be a supercritical Galton-Watson process
with offspring distribution F and mean m = {§ x dF(x), 1 <m< oo, and let
W, = Z,/m", W = lim, W,. Itis well-known ([3], page 54), that for each n we
have a decomposition

1
(1.1) W—Ww,= —m—anﬂl Usi»

where the U, ;’s are i.i.d. for fixed n, each distributed as W — 1 and thus with
mean zero in the W nondegenerate case {3 xlog* xdF(x) < oo. Since Z, is of the
magnitude m", we might expect the convergence rate in the law of large numbers
for random variables distributed as W to give an estimate of W — W,. For ex-
ample, if 6* = Var W < oo and F(0+) = 0, then Z, — oo a.s. and one would
expect m"(W — W,)/o(Z,)} to converge in distribution to the standard normal
distribution and a law of the iterated logarithm,
lim sup m"(W — W,)/(20°Z, loglog Z,)t =1 a.s.

These results were established in [5], [6] and [7].

In the case of infinite variance, which is the subject of the present paper,
the rate of convergence in the law of large numbers depends on the tail prob-
abilities of W. Let e.g. UV, U®, ... be i.i.d. each distributed as W — 1, let
O™ = (U™ 4 ... 4+ U™)/nandlet1 < p < 2,1/p+ 1/g =1. Thenitisknown
([10], page 243) that U™ = o(n~) a.s. if and only if EW? < co, which in turn
may be seen to be equivalent to { x? dF(x) < co. This together with (1.1)
motivates the following result; '

THEOREM 1. Let 1 < p<2,1/p+ 1/g=1. Then

(1.2) W — W, = o(m™™1) ‘a.s., P(W > 0)>0
if and only if _
1.3) (o x? dF(x) < oo .

The proof will be given in Section 2, where we also prove along the same lines
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THEOREM 2. Let o« = 0. Then

(1.4) {5 x(log* x)=** dF(x)
implies that
(1.5) W — W, =o(n* as.

and the a.s. convergence of Y v, (W — W,) for a = 1. Conversely, if
{5 x(log* x)**1=¢dF(x) = + o0
for some ¢ > 0, then lim inf n*(W — W,) = —oo a.s. on {W > 0}.

Let U™ be defined as above. Then it may be proved along the lines of [10],
pages 242-243, that U™ = o((log n)~) if and only if EW(log* W)* < co. In[2]
this latter condition is proved to be equivalent to {;° x(log* x)**! dF(x). Taking
account of (1.1) and the fact that log Z, = n, one would thus expect (1.4) to be
equivalent to (1.5). However, in Section 2 a counterexample is given, which
shows that (1.5) may hold under slightly weaker conditions than (1.4).

The extension of Theorems 1 and 2 to the multitype and continuous-time
Markovian case is stated and proofs outlined in Sections 3 and 4.

2. Proof of Theorems 1 and 2. We may write Z, = Y)7»' X, ;, where the

§=1

X, ;’s are i.i.d. and distributed according to the offspring distribution F. Thus

1
(2.1) w,—W,,= gy fgl_l (Xn,j —m).

This identity will be used repeatedly in the sequel. Also, we let &, = o(X, ;,
j=1,2,...; k £ n) so that in particular Z, is % ,-measurable.

Lemma 1. (1.3) implies the a.s. convergence of
Z::=1 mn/q(Wn - Wn—l) .
ProoF. Let
Yn,j = Xn,j I(Xn,jém”/p) —m,
S, =m" (W, — W,_) =m™ Y21 (X, ; —m),
S, = mP Nian Y, ;.
Observing that > r_, (S’ — E(S)'| F_,)), n=1,2, ..., forms a martingale
with respect to &, &, - - -, it suffices by the Borel-Cantelli lemma and the

convergence theorem for L*-bounded martingales to show the convergence of
each of the series

D P, # 8, X var (S — ES) | F ), e ESS | F ),
the latter in the a.s. sense. First
T P(S, # 8)) = Za E(P(S, # S,/ | 5 ,0)
= Z?f=1 EZn—l S:n/p dF(x)
= 8 (X0 MM s sny) dF (x)
= (¢ O(x?) dF(x) < oo,
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and
Zia Var (S, — ES, | F,) = L E(Var (S| F,.))
=i EZ,_m*?VarY,,
=m0 X0 MmO sm) dF(X)
= m™ (P X0 (x?*¥?) dF(x) < oo .
Finally, the proof is completed by observing that
E(S)| 5 ) = —m ™2, {2up xdF(x) < 0

and that
— e ES) = Yo mmim™ (20 x dF(x)
=m™ {5 xO(x*~Y) dF(x) < oo .
LEMMA 2. Let @), @y, - -+, By, By, - - - be sequences of real numbers.

(i) If a, =0, a, 1 co and the series 3,3, a, B, converges, then Yo_. .. f, =
o(l/ay).
(ii) The convergence of Y _, nf, implies that of Y2, %_, Bu-
(iii) Let 8, =0, 1=, n*B, = +oo for some e in 0 < ¢ < a. Then

limsup N* 3= ., B, = + oo .

Proor. Let Ky =sup, ..y |X 4, @,B,/, so that K, -0, N— . From
Abel’s lemma ([4], page 54) |2 ¢_y.1 8.l < Ky/ay and (i) is clear by letting ¢
tend to infinity. (ii) is clear from (i) and the identity 3V »=_ 8, =

YunBy+ N N5 wia B For (i), suppose T yy; fu = O(N-%). Then upon
integration by parts

L By = Zoa Ba+ T (@ — 17 Z0rn4a Badt
= e B+ 70t Ndt < 0.

PRrOOF OoF THEOREM 1. The “if”-part is clear by combining Lemmas 1 and 2
(i), with a, = m**, 8, = W, — W,_,sothat 3= .., 8, = W — W,. Suppose
conversely that (1.2) holds. In particular, W, — W,_, = o(m~"/%) a.s. and from
P(W > 0) > 0 it follows, that inf Z,/m" > 0 on {Z, > O for all n}. Thus from
(2.1)

n/p

2.2) 'Z}—/_’a Zar1 (X, ; — m) = ’—;Tfl ma (W, — W,_) >0 as.
where we interpret the left-hand side of (2.2) as zero for Z, = 0. Now take a
sequence U,, U,, --- of i.i.d. random variables distributed as X, , — m and de-
fined on some arbitrary probability space. Also, let Uy¢, Uy, - .. be i.i.d. such
that U,° follows the symmetrized distribution of U, and let for ¢ >0 ¢, , =
P |U, + -+ + U, > 9), ga0 = PoUg + oo 4+ U] > o).

From (2.2) and an extension of the Borel-Cantelli lemma ([10], page 397)
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applied to the events

An,e = {Z;l/lp |Z]ZL"1_1 (Xn,]' - m)l > E} ’
it follows that

(2.3) Yine19z,_ye = D P(An | Fao)) < 0 ass. forany ¢>0.

Thus also 2in=19%, ¢ = 2w=1292, .2 < o0 a.s. Now take a sequence k,,
ky, -+ of integers of the form k, = Z,_(w), where o belongs to the set of
positive probability, where lim, Z,(w)/m* exists and is > 0 and where
Zin-19%,w,e < oo for any rational ¢ > 0 (say). From the Borel-Cantelli lemma
it follows that V, = k,”V?(Uy + --- + U; ) — 0 a.s. Also, if we let M, =
ko V% supigqr |US + « -+ 4 Uy|, then by an inequality of P. Lévy ([10], page
247) P(M,, > ¢) < 24, ., and applying the Borel-Cantelli lemma once more we
get M, — 0 a.s. Since k,,,/k, — m, there is a y > 0 such that k, > rk,,, for
all n, and for n large, k, < k,,,. Fork, <t<k,,,

@4) VIS0 e Vg UG e+ U
= Wi, + 2r7?°M,,,,
so that ¥, — 0 a.s. for t — co. But this is only possible if E|U|” < oo ([10],
page 213) and thus if { x? dF(x) < oo.
PROOF OF THEOREM 2. WeletS, =n*(W,— W,_),Y,. =X, ; Lix, jamome) —
m, S, = (n®/m") Y,%»11Y, ; in analogy with the proof of Lemma 1. By calcu-
lations similar to the ones employed there we get

(2.5) 2n=1 P(Sa # S) = (7 (T2 M oy mnynay) dF(x)
= (¢ O(x(log* x)*) dF(x) ;
(2.6)  XZi.Var (S, — E(S) | F ) = (7 x(Zea n /M gmnyney) dF (%)
= {5 O(x(log* x)) dF(x) ,
(2.7) — 2Ln=1 ES) <m0 x(X521 11 o5 mymey) dF (x)
= m~' {§ x(log* x)**' dF(x) .
Thus, arguing as before, (1.4) implies the a.s. convergence of Y., n*(W, —
W.,_,) and thus (1.5) by part (i) of Lemma 2. The a.s. convergence of Y =_, (W —
W,) is clear for @ > 1 from (1.5), while for « = 1 we need only to appeal to
Lemma 2 (ii), with 8, = W, — W, _..

In order to show that {5 x(log* x)**'~*dF(x) = + oo for some ¢ > 0 implies
that lim inf n(W — W,) = —oo a.s. on {W > 0}, it is no restriction to assume
P(W > 0) > 0 so that at least {° x log* x dF(x) < oo. Also, by replacing & with
a smaller « if necessary, we may assume {° x(log* x)* dF(x) < co. Then from
(2.6) and (2.5), To., (S — E(S/|-5,.) and Tz, (S, — E(S,/|.5,_,)) con-
verge a.s. Applying Lemma 2(i), with a, = n*, 8, = W, — W,_, — n—2E(S,’ |
F u-1) We get

2.8) W= Wy = Do ES, | 5,) = oN-7)  as.
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and we need only to show that liminf N* 312 .. n=?E(S,’| & ,_) = —oco a.s.
on{W > 0}. Buton {W >0} W = inf Z, ,/m" > 0 and the proof is concluded
by Lemma 2 (iii), with 8, = —n=2E(S,’'| % ,_)), since

a7 By, = Tn n M Sn e X dF(X)
Z K SSQ x(Z:::l n*=¢1 (z>mn/,,,a)) dF(X)
= W {7 xO((log* x)**'~¢) dF(x) = 4 o0 on {W > 0}.

From the last part of the proof, a counterexample on the implication (1.5) —
(1.4) is easily constructed. We need only to take an F such that
18 x(log* x)* dF(x) < o0, {7 x(log* x)** dF(x) = + 00, Tiiyi1 Soomyme X dF(xX) =
. o(N—%).

For example, for @ > 0 we may take F with point probabilities of magnitude
(n*(log n)*** log log n)~*. Then (2.8) holds and thus (1.5) since

— e 0ES) | F s = N5wis Zna /M (e X dF(X) = o(N-%)  a.s.

3. The multitype case. Let Z,, Z,, ... be a k-type Galton-Watson process
with offspring distributions F, ;. Thatis, Z, = (Z,! ... Z,*) and

(3.1) : Zj= Tk, Do Xi, j=1,. 0k

where the X’s are independent and X%/ distributed according to F, ;. Let M be
the mean matrix with elements m, ; = {° xdF, ;(x) so that E(Z, | Z,_,) = Z,_, M.
We consider the positive regular case as defined in [8] and let as usual p be the
largest positive eigenvalue of M with associated right and left eigenvectors 4 and
v, normalized by vu’ = 1. For further details on the setup, see [8] or [3],
Chapter 5.

In the supercritical case o > 1 there exists a one-dimensional random variable
W such that lim, Z,/p" = Wv a.s. To investigate the rate of this convergence,
we shall content ourselves with the analogues of the direct parts of Theorems 1
and 2 and merely outline the proofs.

THEOREM 3. Let 1 < p<2,1/p+ 1/g=1. Then
3.2) (& x? dF, ;(x) < o0, Lj=1,...,k,
implies* hat
(3.3) W — Z,ulp" =' o(p~™7) a.s.

Note that the sequence Z,u'[p" forms a nonnegative martingale with limit
Wou' = W. In [9], some convergence rate results have been obtained in the
case of finite variance by examining the limiting behaviour of Z,a’ for vectors
a with va’ = 0. For example, for some p, with 0 < p, < p, which may be
arbitrarily close to p, Z,a’/p," may have a nondegenerate limit. From this it
follows that (3.3) could not be strengthened to Wv — Z,/o" = o(p~"/7) a.s.
However, a weaker estimate of Wv — Z, /0" may be obtained under conditions
corresponding to those of Theorem 2:
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THEOREM 4. Let a = 0. Then

(3'4) Sgo x(l°g+ x)a+l dFi.j(x) < o0, la] - 15 ] k
implies that
3.5) Wv — Z,[p" = o(n™%) a.s.

and the a.s. convergence of Y%, (Wv — Z,/o") for a = 1.
PRrOOF OF THEOREM 3. Since
W= ZW|o" = Sgmnss Zal [p" — Znoy 0"
= Dmeni1 (Zn — Zp_ M)W [0™ ,
(3.3) follows as in Section 1 once we have established the a.s. convergence of

—ZM) _ 5o (Zn — Z,HM>’

(3.6) i oo o
p’"v/P
However, by (3.1) the jth component of the nth term of (3.6) equals
fap™? Dhp (Xl — my)
and the argument of the proof of Lemma 1 gives the convergence of each of
the series

T 07 Bl (Xal — mey)
and thus of (3.6).
Proor oF THEOREM 4. The a.s. convergence of
Z';.::l na(Zn - Zn—lM)
is obvious by combining the proofs of Theorems 2 and 3. Arguing as above, we
get W — Z, u'[p" = o(n~*) and the a.s. convergence of

S (W — Z,uo")
for @ > 1. Since Z* is spanned by u and the vectors orthogonal to v, what we
need to conclude the proof is thus (i) Z,a'/p" = o(n~*) a.s. for va’ = 0, and, for
the convergence of

2o (WY — Z,[0") ,

(ii) the a.s. convergence of
2in=0Zaa 0"
for va’ = 0 and @ = 1. Obviously both (i) and (ii) follow from
LeMMA 3. (3.4) implies the a.s. convergence of Y.v_,n°Z,a'[p™ for any a with
va' = 0.
The proof involves no essential new ideas. The details are, however, some-
what tedious and can be found in [1].

4. The continuous-time Markovian case. Let {Z,; t > 0} be a Markov branch-
ing process with offspring distribution F and intensity 8. Then in the super-
critical case 2 = § (" (x — 1) dF(x) > 0, W = lim, W, = lim, e~*Z, exXists a.s.

THEOREM 5. Let1 < p <2, l/p+1/g=1. Then W — W, = o(e~*") a.s.,
P(W > 0) > 0 if and only if {3 x? dF(x) < oo.



CONVERGENCE OF BRANCHING PROCESSES 145

Proor. Since {§ x? dF(x) < oo if and only if E(Z?|Z, = 1), the “only if”-
part is clear by applying Theorem 1 to Z,, Z,, - ... While the proof of the con-
verse in discrete time was based upon martingale sequences of the form

Zﬁ=1f(")(Wn - Wn—-1) ’ N= 1, 29 ity

we shall here introduce a random measure dW, with the property {§dW, =
Wy — W, for T < S and use integration with respect to dW, to obtain suitable
martingales. More precisely, we define dW, in terms of the split times (cf. [3],
Section II1.9) 7, 7,, - - - and the jumps &, &,, - - - of the process. If Z, =1, S, =
Z =1+&+4---4+§, thenZ, =S, forr, <t < r,,,and we let dW, be the
measure with atoms of weight e~*»£, at each r, and with density — 2e-#'S, with
respect to Lebesgue measure dt on each of the intervals [z,, 7,,,]. From the
martingale property of W, it is intuitively obvious and easily verified, that
(§3 f(t)dW,; 0(Z,; t < T)) is a martingale for each f, which is measurable and
bounded on finite intervals. Thus also the sequence U, = {s» f(r) dW, should
be a martingale with respect to &, = o(7y, - - -, 7,5 &, - - -, §,) and this follows
from

E({in+1 f(1) dW,|.F,)
= E(f(tp)e* 1€, — 28, (inn1 f(t)e= dt| . F,)
= (& f(r, + t)e"*eat8S e=fSndt . 2B
— 28, $5 f(z, + e *n*OP(c,  — 7, > t| F,)dt =0

since 7,,,, — 7, is exponential with rate 3§,.

If f(r) = e*? and E|§)|? < oo, the a.s. existence of lim, U, may be shown by
truncating &, at n'/?; this step involves some standard calculations, which are
similar to those of the proof of Lemma 1 and will be omitted. For z, < T <
Tasns |$0 f(O) AW, — U,| = S, Sf,,f(’)e'“ dt < 28,(Tyyy — To)e 77

This last expression is easily seen to tend to zero as n — oo, using the Borel-
Cantelli lemma and the facts that e=*+/» = O(n="?) ([3], page 120) and that
Sy(ty, — 71), Sty — 75), - -+ are i.i.d. with exponential distribution. Thus the
a.s. existence of lim, {7 f(r) dW, follows by letting n tend to infinity. We can
now conclude the proof by an argument similar to the one leading to part (i)
of Lemma 2. Let K, = sup,,.»r |{:f(r) dW_|, so that K, — 0 a.s. for T — oo,
and let g(r) = d/dt(1/f(¢)). Since g(t) € 0, we get for T < §

|Ws - WT| = |S§'th| =

53 (s — 15 0(0) de ) ) aW|

7S
1
< L Kk, 1138 o(c) de \5 (1) dW,
S s Ko 157000 e 5.7 a0
1 - 1
<K |— — V5 g9(n)dr ) =K, ——.
< K (g — S0 &) = Ko oo

Thus |W — W,| < K [f(T) = o(1/f(T)) = o(e=*"77).
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