Open Access
Translator Disclaimer
April 2001 Isoperimetry for Gibbs Measures
Bogusław Zegarlinski
Ann. Probab. 29(2): 802-819 (April 2001). DOI: 10.1214/aop/1008956693

Abstract

We show that a strong mixing condition implies a Bakry-Bobkov-Ledoux inequality for a probability measure on infinite-dimensional space.

Citation

Download Citation

Bogusław Zegarlinski. "Isoperimetry for Gibbs Measures." Ann. Probab. 29 (2) 802 - 819, April 2001. https://doi.org/10.1214/aop/1008956693

Information

Published: April 2001
First available in Project Euclid: 21 December 2001

zbMATH: 1027.60099
MathSciNet: MR1849178
Digital Object Identifier: 10.1214/aop/1008956693

Subjects:
Primary: 28C , 35R45.

Keywords: functional inequalities , Isoperimetry , probability measures on infinite dimensional spaces

Rights: Copyright © 2001 Institute of Mathematical Statistics

JOURNAL ARTICLE
18 PAGES


SHARE
Vol.29 • No. 2 • April 2001
Back to Top