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ISOPERIMETRY FOR GIBBS MEASURES1

By BogusŁaw Zegarlinski

Imperial College, London

We show that a strong mixing condition implies a Bakry–Bobkov–
Ledoux inequality for a probability measure on infinite-dimensional space.

1. Introduction. In recent years we observe an interesting and intensive
development in the area of isometry and its relation to coercive inequalities
in infinite dimensions; see, for example, [2, 5, 17, 18] and references given
there. In particular in [2] and [5] the following new functional inequality was
introduced:

� �µf� ≤ µ�� 2�f� +C�∇f�2�1/2(1)

for any function 0 ≤ f ≤ 1 for which the right-hand side is finite; here
� ≡γ ◦ �−1 is the Lévy–Gromov isoperimetric function of a standard Gaussian
distribution � and density γ, µF denotes the expectation of a function F with
a probability measure µ and ∇f is a natural gradient of the function f. It
was shown there that such inequality has a product property; that is, if it
is true for two probability measures, it also holds for their product. Thus
it is suitable for the infinite-dimensional setting. Additionally, in [5] (using
the arguments similar to the �2 criterion of Bakry–Emery [1]), the authors
demonstrated that this inequality can also be proved for nontrivial measures
when the underlying space is given as a product of smooth finite-dimensional
Riemannian manifolds with strictly positive Ricci curvature.

In this paper we explore further the functional side of the isoperimetry in
infinite dimensions. Refining the ideas introduced in the last decades in the
course of studying the logarithmic Sobolev inequality (see, e.g., [9], [14]–[16],
[20]–[23] and references therein), in Section 2 we show that more general
inequalities propagate to infinite dimensions provided that the correspond-
ing finite-dimensional conditional expectations satisfy them together with a
strong mixing condition and some mild regularity condition (see Theorems 2.2
and 2.4). Section 3 is devoted to a closer discussion of the regularity and mixing
in a comprehensive class of situations when the underlying space is defined as
a infinite product associated to either a smooth connected finite-dimensional
Riemannian manifolds or a finite set. In particular this allows including the
results of [5]. Additionally, in Section 4 we prove that the inequalities of inter-
est to us are true for finite-dimensional conditional expectations in the discrete
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setting and so the strategy developed in the previous sections applies (see
Theorem 4.4). By this we generalize the results of [2] in an essential way.

As a by-product of our work (by general arguments of [5]), we get yet another
proof of the logarithmic Sobolev inequality.

Summarizing, in our work we have introduced a family of functional inequal-
ities which potentially allow the study of various classes probability measures
and give a deeper insight into the corresponding isoperimetric problem. One
may also hope that such inequalities could be of interest to the geometric
measure theory.

2. Coercive inequalities for infinite mixing systems. Let � denote
the family of all finite subsets in �d. For 	 ∈ � , its cardinality will be
denoted by �	�. Let 
 ≡ M�d , where M is either a smooth connected finite-
dimensional Riemannian manifold or simply a finite set. We will say that a
function f� 
→ � is localized in a finite set 	 ⊂ �d iff it depends only on
coordinates �ωi� i ∈ 	� and the smallest localization set for f will be denoted
by 	f. Let ∇jf denote the gradient and the discrete gradient (with respect to
the ith coordinate), given by ∇jf ≡ f − νjf, on a Riemannian manifold and
a finite set, respectively, where νj denotes a copy of the uniform probability
measure on M with the subscript indicating the integration over the coordi-
nate ωj of ω ≡ �ωk�k∈�d . For a set 	 ⊂ �d, we denote ∇	f ≡ �∇jf�j∈	 and we
define

�∇	f�pp ≡
∑
j∈	
�∇jf�p�

For 	 ∈ � and a configuration ω ∈ 
 ≡M�d , let µω	 be a probability kernel on

 given �ωj� j ∈ �d\	�. We will assume later on that the kernel µω	 is of range
R ∈ �0�∞�; that is, for any bounded measurable function f localized in 	, its
expectation µω	f depends only on ωj� j ∈ �d\	, dist�j�	� < R (clearly, by
definition, for any function the expectation µω	f is independent of ωi, with
i ∈ 	).

Let � be a nonnegative concave function on an interval I ⊂ �. Let C	 be
the best constant such that the following inequality BBLp(	), p ∈ �1�∞�, is
true uniformly in external conditions ω ∈ 
,

��µω	f� ≤ µω	
(
��f�p +C	�∇	f�pp

)1/p(2)

for all functions f� 
→ I for which the right-hand side is finite.
Given a set � ≡ ⋃

k 	k consisting of disjoint finite cubes 	k ∈ � , k ∈ �,
which are translates of a given cube 	0 and such that dist�	k�	l� ≥ 2R for
k �= l, we define the following product measure

E� ≡
⊗
	k⊂�

µω	k

Following [5] and [2], we have the following preliminary lemma.

Lemma 2.1. Suppose BBLp(	) is true for some p ∈ �1�∞�. Then we have

��E�f� ≤ E�
(
��f�p +C��∇	f�pp

)1/p(3)
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with a constant C� = C	 for all functions f� 
→ I for which the right-hand
side is finite.

Proof. The proof is similar to the one given in [5] and [2] and goes by the
following inductive arguments. Let 	k, k ∈ �, be a lexicographic ordering of �.
For n ∈ � we define ��n� ≡ ∪k=1�����n	k. Suppose for some n ∈ �, we have

��E��n�f� ≤ E��n�
(
��f�p +C	�∇��n�f�pp

)1/p(4)

for all functions f for which the right-hand side is well defined. Then for
E��n+1� = E��n� ⊗ µω	, ��n� ∩ 	 = �, we have

��E��n+1�f�=��E��n� ⊗ µω	f�
≤E��n�

(
��µω	f�p +C	�∇��n�µω	f�pp

)1/p(5)

Now, using our assumption (2) we can bound the right-hand side as follows:

E��n�
(
��µω	f�p +C	�∇��n�µω	f�pp

)1/p
≤ E��n�

((
µω	

(
��f�p +C	�∇	f�pp

)1/p)p +C	�µω	∇��n�f�pp)1/p�(6)

Applying the Minkowski inequality,(
�µω	F0�p +

∑
l∈�
�µω	Fl�p

)1/p

≤ µω	
(
�F0�p +

∑
l∈�
�Fl�p

)1/p

(7)

withF0≡���f�p+C	�∇	f�pp�1/p andFl ≡ C1/p
	 ∇jlf, jl ∈��n�, and rearranging

the terms we arrive at the desired inequality for E��n+1� . By induction this
shows inequality (3) for any local function with finite gradient. Since such
functions are dense in the set �f� 
 → I/E��∇�f�p < ∞�, this ends the
proof. ✷

Let �l, 0 ≤ l ≤ K ≡ 2d, be the suitable translations of the �0 considered
above, so that their union covers the lattice �d; see [16]. We will set El ≡ E�l
and define the following transfer matrix:

� ≡ EK−1 · · ·E0�

In the following result we formulate sufficient conditions on the transfer
matrix � , which allow us to prove the BBLp inequality for a nonproduct
measure on the infinite-dimensional space 
.

Theorem 2.2. Suppose the following conditions are satisfied:

(Ci) There is a constant C̃ ∈ �0�∞� such that

��� f� ≤ �
(
��f�p + C̃�∇f�pp

)1/p(8)

for any function f for which the right-hand side is finite.
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(Cii) There is λ ∈ �0�1� such that

�∇� f�pp ≤ λ
∑
j

�� �∇jf��p�(9)

Then for any N ∈ �, we have(
���Nf�p + C̃�∇�Nf�pp

)1/p ≤ �N
(
��f�p + C̃N�∇f�pp

)1/p(10)

for any function f for which the right-hand side is finite with a constant

C̃N ≡ C̃
N−1∑
k=0

λk�(11)

Hence the following BBLp inequality is true for the infinite volume measure

µ ≡ limN→∞�N:

��µf� ≤ µ(��f�p +C�∇f�pp)1/p(12)

with a constant

C ≤ C̃/�1− λ��(13)

Proof. By condition (Ci), we have

���Nf� ≤ � ����N−1f�p + C̃�∇�N−1f�pp�1/p�(14)

Applying (Ci) to the first term in the bracket on the right-hand side, we have

���N−1f�p ≤ �� ����N−2f�p + C̃�∇�N−2f�pp�1/p�p�(15)

On the other hand, using (Cii), we get the following estimate for the second
term in the bracket on the right-hand side of (14):

�∇�N−1f�pp ≤ λ
∑
j

�� �∇j�N−2f��p�(16)

Combining this and using the Minkowski inequality, we arrive at

���Nf�≤� ����N−1f�p + C̃�∇�N−1f�pp�1/p

≤� 2����N−2f�p + C̃�1+ λ��∇�N−2f�pp�1/p�
(17)

Hence, by induction we get

���Nf� ≤ �N���f�p + C̃N�∇f�pp�1/p(18)

with

C̃N ≡ C̃
N−1∑
k=0

λk�(19)

Since under the assumption (Cii) we have �Nf→ µf for any local � 1 func-
tion f, this also implies (12). This ends the proof of Theorem 2.2. ✷
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Now we would like to formulate a local condition in terms of the conditional
expectation µω	 for a cube 	 of a finite size, which allows us to verify the desired
properties (C) of Theorem 2.2.

Definition 2.3. A local specification �µω	�	∈� �ω∈
 is called regular iff there
are constants α�	�ij , ij ∈ �d, such that

�∇iµω	f� ≤
∑

j∈	∪�i�
α
�	�
ij µ

ω
	�∇jf�(20)

for any differentiable function f; because of the definition of conditional expec-
tation we can and do assume that α�	�ij ≡ 0 if i ∈ 	.

A local specification �µω	�	∈� �ω∈
 is called mixing iff additionally the con-

stants α�	�ij , i� j ∈ �d, satisfy

α
�	�
ij ≤ ae−M�i−j�(21)

with some constants a�M ∈ �0�∞� independent of i� j and the set 	 ∈ � .

Using this definition we show the following result.

Theorem 2.4. (i) Suppose the local specification is regular and for a cube
	 ∈ � the corresponding conditional expectation satisfies the inequality
BBLp(	)with some constant C	 ≡ C��	��. Then the transfer matrix � satisfies
the condition (Ci).

(ii) If additionally, the local specification is mixing, then the condition (Cii)
is satisfied provided the size of the cubes 	l ⊂ � is sufficiently large.

Proof. We begin from the arguments which allow us to estimate the
gradients. For a diferentiable local function f we define

fk ≡ Ekfk−1 ≡ EkEk−1 · · · E0f(22)

for k ∈ �. Given a point i /∈ �k there is at most one cube 	�i� ⊂ �k such that
dist�i�	�i�� ≤ R and dist�j�	l� > R for any other cube 	l ⊂ �k, 	l �= 	�i�.
Using this together with the regularity of the local specification we get

�∇iEkfk−1� = �E�k\	�i�∇iµ·	�i�fk−1� ≤ E�k\	�i��∇iµ·	�i�fk−1�
≤ ∑
j∈	∪�i�

α
�	�i��
ij Ek�∇jfk−1��(23)

Iterating this argument we arrive at the following bound:

�∇iEkfk−1� ≤
∑
j

η
�k�
ij EkEk−1 · · · E0�∇jf��(24)
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where

η
�k�
ij ≡ ∑

	ij=�i� j1� ���� jk� j�
α
�	�i��
ij1

α
�	�j1��
j1j2

· · ·α�	�jk��jkj
(25)

with the summation going over the paths 	ij ≡ �i� j1� � � � � jk� j� such that
jl ∈ 	�jl−1�\�k−l−1 ∪ �jl−1� for l = 1� � � � � k− 1.

Applying the Hölder inequality to (24), we obtain

�∇ifk�p ≤
[∑
j

η
�k�
ij

]p−1∑
j

η
�k�
ij

(
EkEk−1 · · ·E0�∇jf�

)p
�(26)

whence

�∇fk�pp ≤ Ak
∑
j

�EkEk−1 · · ·E0�∇jf��p(27)

with a constant Ak given by

Ak ≡ max
i∈�d

[∑
j

η
�k�
ij

]p−1
max
i∈�d

∑
j

η
�k�
ji �(28)

Hence in particular we obtain

�∇� f�pp ≤ λ
∑
j

�� �∇jf��p(29)

with λ ≡ AK. At this point, following [16], we observe that if k = K in any
path 	ij there has to be a large step, say �jl� jl+1�, such that dist�jl� jl+1� ≥
1
4diam�	0�. In the case when the local specification is mixing, this implies that

αjl�jl+1 ≤ a exp�−M 1
2diam�	0���

Hence one can easily see that by choosing 	0 sufficiently large we can get
λ ∈ �0�1�. This ends the proof of (Cii).

Given (27) and (28) and using Lemma 2.1 we can complete the proof of (Ci)
as follows. In the first step, by Lemma 2.1, we have

��� f� = ��EKfK−1� ≤ EK
(
��fK−1�p +C	�∇fK−1�pp

)1/p
�(30)

Hence, applying (27) and (28), we get with A ≡maxk=0�����KAk,
��� f�=��EKfK−1�

≤EK
(
��EK−1fK−2�p +C	A

∑
j

�EK−1∇jfK−2�p
)1/p

≤EK
(�EK−1���fK−2�p +C	�∇fK−2�pp�1/p�p

+C	A
∑
j

�EK−1∇jfK−2�p
)1/p

�

(31)
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where in the last step we have applied Lemma 2.1 again. From (31), using the
Minkowski inequality, we obtain

��� f� ≤ EKEK−1���fK−2�p +C	�1+A��∇fK−2�p�1/p�(32)

Applying these arguments inductively we arrive at the following bound:

��� f� ≤ � ���f�p + C̃�∇f�pp�1/p(33)

with a constant C̃ given by

C̃ ≡ C	
K∑
k=0
Ak�(34)

This ends the proof of Theorem 2.4. ✷

Remark 2.5. We note that, although we have given here a proof for con-
ditional expectations of finite range, one can use a modification of a strategy
(similar to the one considered in [22]) to prove the corresponding result for
the case of infinite range.

3. Regularity and mixing conditions. For a set 	 ∈ � , we define a
finite volume Gibbs measure µω	 with external condition ω ∈ 
 as follows:

µω	�f� ≡ δω�ν	�ρ	f��(35)

with

ρ	 ≡
e−U	

ν	e
−U	 �

where δω is a point measure concentrated on a configuration ω, ν	 ≡ ⊗j∈	νj
with νj = ν0�dωj� being the uniform probability measure on M and

U	 ≡
∑

X∩	 �=�
)X

where )X is a continuous (respectively, � 1 ifM is a smooth compact connected
Riemannian manifold) function localized in a finite set X ∈ � ; that is, it
depends only on the coordinates ωX ≡ �ωj ∈ M� j ∈ X�. The collection
) ≡ �)X�X∈� is called an interaction and we assume that

�)� ≡ sup
j∈�d

∑
X� X�j

�)X�u <∞�

Under this condition we have �U	� ≤ �)�·�	�, where �	� denotes the cardinality
of the finite set 	, and therefore our finite volume measure µω	 is well defined.
To simplify the exposition, later on we restrict ourselves to interactions ) of
finite range R > 0, that is, such that )X ≡ 0 if diam�X� > R.

The following strong mixing condition is well established in the literature
(see [6], [13], etc.) and can be verified in a large number of interesting situa-
tions.
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Definition 3.1 The strong mixing condition. There is a constant M∈
�0�∞� such that for any cube 	 ⊂ �d and any configuration ω ∈ 
, we have∣∣µω	 ��F− µω	�F���G− µω	�G���∣∣ ≤ e−Mdist�	F�	G���F�� · ��G��(36)

for all local functions F and G dependent on coordinates ωi� i ∈ 	F and ωi,
i ∈ 	G, respectively, for some subsets 	F�	G ⊂ 	; here

��g�� ≡∑
i

��∇ig��u�

We remark that the strong mixing condition, if it is satisfied for sufficiently
large cubes, is also satisfied for all unions of such cubes (see [6], [12], [13],
etc.).

In this section we show the following result.

Theorem 3.2. The local specification �µω	�	∈� �ω∈
 is regular; that is, there

are constants α
�	�
ij , i� j ∈ �d, such that

�∇iµω	f� ≤
∑

j∈	∪�i�
α
�	�
ij µ

ω
	�∇jf��(37)

for any differentiable function f; because of the definition of conditional expec-

tation we can and do assume that α
�	�
ij ≡ 0 if i ∈ 	

Moreover, if the strong mixing condition is satisfied, then for any cube 	 ∈ �

the constants α
�	�
ij , i� j ∈ �d, satisfy

α
�	�
ij ≤ ae−M�i−j�(38)

with some constants a�M ∈ �0�∞� independent of i� j and the cube 	 ∈ � .

Before we begin the proof, let us notice that the following fact is true.

Lemma 3.3. For any set 	 ⊂ �d and any finite set - ⊂ 	 the following
L1-Poincaré inequality is true:

m-µ
ω
	�F− µω	F� ≤ µω	�∇-F�1(39)

for any differentiable function F localized in - with a constant m- ∈ �0�∞�
independent of 	, ω and a function F.

Proof. First we note that for the product measure we have [10]

m
�0�
- ν-�F− ν-F� ≤ ν-�∇-F�1(40)

with some constant m�0�
- independent of a � 1 function F localized in -. From

this the desired inequality follows by the following sequence of inequalities
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for any � 1 function F localized in -:

µω	�F− µω	F� ≤2e2�)�·�-�ν-�F− ν-F� ≤ 2e2�)�·�-��m�0�
- �

−1
ν-�∇-F�1

≤2e4�)�·�-��m�0�
- �

−1
µω	�∇-F�1�

(41)

This ends the proof of Lemma 3.3. ✷

Proof of Theorem 3.2 (The continuous case). We consider first the case
when M is a Riemannian manifold and therefore differentiation satisfies the
Leibnitz rule; similar arguments for the discrete case are given later. Let -
be a cube contained in a larger cube 	. For a differentiable function f, let
F- ≡ Eµω	 �f�ω-� = µω	\-f; that is, F is a conditional expectation given ω-
associated to the measure µω	. We notice first that for any local � 1 functions
and any j ∈ 	c such that dist�j�-� > R, we have

∇jµω	�f�=∇jµω	�µ·	\-f� ≡ ∇jµω	�F-�
=µω	�∇jF-� − µω	�∇jU	�F-��

(42)

where for two bounded measurable functions g and h we have set

µ�g�h� ≡ µ�gh� − µ�g�µ�h�
to denote the covariance with a probability measure µ. The first term on the
right hand side has the right structure already, so we need to consider only
the second one. Since F- depends only on coordinates in the set - (the others
in 	c are fixed), we can write that term as follows:

µω	�∇jU	�F-� = µω	�µω	\-�∇jUj��F-��(43)

where we have also used the local structure of U	 to get ∇jU	 = ∇jUj. Using
(43) together with the L1-Poincaré inequality of Lemma 3.3 we arrive at

�µω	�∇jU	�F-�� ≤m−1
- Var-�µω	\-�∇jUj��µω	�∇-F-�1�(44)

where

Var-�g� ≡ sup
ω�ω̃�ω-c=ω̃-c

�g�ω� − g�ω̃���

Combining (44) and (42) we obtain the following inequality:

�∇jµω	�f�� ≤
∑

l∈-∩�j�
γjlµ

ω
	�∇lµω	\-�f��(45)

with

γjl ≡m−1
- Var-

(
µω	\-�∇jUj�

)
(46)

for l ∈ - and γjj ≡ 1. Since the terms on the right-hand side of (46) are of
the same structure as that we started with, we can apply these arguments
inductively and after a finite number of steps obtain the regularity statement.



ISOPERIMETRY FOR GIBBS MEASURES 811

To prove the second property of interest to us we observe that if the strong
mixing condition is satisfied then by standard arguments we have

Var-�µω	\-�∇jUj�� ≤ ãe−Mdist�j�-��(47)

with a constant ã ∈ �0�∞� dependent only on ∇jUj and �)�. Using this
observation we can optimize our inductive procedure (which led us to the
regularity) so that at every consecutive step we choose the next cube to be lying
as far as possible from the previous cube and in the way that the remaining
new set has a shape similar to a cube (similarly as in [14]). After resuming the
resulting expansion we arrive at the desired bound (38) on the corresponding
coefficients αji. This ends the proof of Theorem 3.2 in the continuous case. ✷

Proof of Theorem 3.2 (The discrete case). Now we consider the case
when M is a finite set. In this case the differentiation does not satisfy the
Leibnitz rule, but we have

∇j�FG� ≡ FG− νj�FG� = ∇j�F�G+ νj�F�∇j�G� − νj�F∇j�G���
Let - be a cube contained in a larger cube 	. For a function f, let F- ≡
Eµω	 �f�ω-� = µω	\-f; that is, F is a conditional expectation given ω- associated
to the measure µω	. We notice first that for any functions and any j ∈ 	c such
that dist�j�-� > R, we have

∇jµω	�f� = ∇jµω	�µ·	\-f� ≡ ∇jµω	�F-��(48)

Since µω	 has density ρ	�ω with respect to the product measure ν	, we have

∇jµω	�F-�= ν	�∇j�ρ	�ωF-��
=µω	�∇j�F-�� + µω	�ρ−1	�ω∇j�ρ	�ω�νj�F-��
+ ν	�νj�∇jρ	�ω�F-��

(49)

The first term on the right-hand side has the right structure already, so we
need to consider only the second and third. We note that because F- depends
only on coordinates in the set -, so does νjF- (the others in 	c are fixed).
Therefore we can write the second term as follows:

µω	�ρ−1	�ω∇j�ρ	�ω�νj�F-�� = µω	�µω	\-�ρ−1	�ω∇j�ρ	�ω��νj�F- − µω	�F-����(50)

where we have also used that

µω	�ρ−1	�ω∇j�ρ	�ω� = 0�

Now we can bound (50) as follows:

�µω	�ρ−1	�ω∇j�ρ	�ω�νj�F-���
≤ Var-�µω	\-�ρ−1	�ω∇j�ρ	�ω��µω	νj��F- − µω	�F-���
≤m−1

- e
4�)�Var-

(
µω	\-�ρ−1	�ω∇j�ρ	�ω�

)
µω�j�µ

·
	�∇-F-�1�

(51)

where in the last step we have used the L1-Poincaré inequality of Lemma 3.3
(and some simple arguments to replace νj under the expectation with the
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measure µω	 by the conditional expectation µω�j�). The third term from the
right-hand side of (49) we treat as follows. We observe first that we can write
it as

νj�µω	�ρ−1	�ω�∇jρ	�ω�F-�� = νj�µω	��µω	\-ρ−1	�ω�∇jρ	�ω���F- − µω	F-����(52)

Hence, by similar arguments used to estimate the second term on the right
hand side (49), we obtain the following bound:

�ν	�νj�∇jρ	�ωF-�� ≤m−1
- e

2�)�Var-
(
µω	\-�ρ−1	�ω∇j�ρ	�ω�

)
µω�j�µ

·
	�∇-F-�1�(53)

Combining (48), (51) and (53) we obtain the following inequality:

�∇jµω	�f�� = �∇jµω	�F-�� ≤
∑

l∈-∪�j�
γjl�δjlδω + �1− δjl�µω�j��µ·	�∇l�F-��(54)

with

γjl ≡ 2m−1
- e

4�)�Var-
(
µω	\-�ρ−1	�ω∇j�ρ	�ω�

)
(55)

for l ∈ - and γjj ≡ 1. Since the terms on the right-hand side of (55) with l �= j
are similar to the structure we started with, we can apply these arguments
inductively and after a finite number of steps obtain the regularity statement.

To prove the second property of interest to us we observe that if the strong
mixing condition is satisfied then by standard arguments we have

Var-
(
µω	\-�ρ−1	�ω∇j�ρ	�ω�

) ≤ ãe−Mdist�j�-�(56)

with a constant ã ∈ �0�∞� dependent only on �)� and �-�. Using this observa-
tion we can optimize our inductive procedure (which led us to the regularity)
so that at every consecutive step we choose the next cube to be lying as far as
possible and in the way that the remaining new set has a shape similar to a
cube (similarly as in [14]). After resuming the resulting expansion we arrive
at the desired bound (38) on the corresponding coefficients αji. This ends the
proof of Theorem 3.2 in the discrete case. ✷

4. Applications. In this section we consider in more detail the BBL2
inequality originally introduced in [2] and [5] with

� = � ≡ γ ◦ �−1�
where � and γ denote the distribution and density of the Gaussian measure
with mean zero and covariance 1. We have already mentioned that [5] includes
a proof of such inequalities for the case when the configuration space is given
by 
 ≡ 
�d , with 
 being a smooth compact and connected Riemannian
manifold with strictly positive Ricci curvature. Such an assumption makes
it possible to use an excellent idea similar to the �2 criterion of Bakry and
Emery [1], invented for the case of logarithmic Sobolev inequality. If one would
like to apply this idea directly in the infinite-dimensional setting, it would
require some delicate smoothness justification. One way to overcome them
is via the use of the method of [5] to get BBL2(	) for large cubes and then
follow the strategy described in the previous sections. In fact we believe that
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following our route it is possible to extend the domain where BBL2 is true to
the cases when Ricc> 0 does not hold (see Addendum at the end of the paper
confirming that).

In this paper we concentrate on the discrete case, that is, the case when 

is a finite set. Typically, it is a more complicated case and so far no results
have been published on that (except the ones for the product measure in [2]).
It is sufficient to consider 
 = �−1�+1�. We choose it also because it is an
important case for many applications including those of statistical mechanics.

To prove BBL2(	) for a general finite set 	 ⊂ �d, we will need to show that
it holds for measures associated to the one point sets. We begin by proving the
following general fact.

Lemma 4.1. For any probability measure µ on 
 ≡ �−1�+1�, there is a
constant C ∈ �0�∞� such that we have

��µf� ≤ µ���f�2 +C�∇0f�2�1/2(57)

for any function 0 ≤ f ≤ 1, with ∇0f ≡ f− ν0f.

Proof. Setting µ��−1�� ≡ α and µ��+1�� ≡ β, we will show that for any
a� b ∈ �0�1� the following inequality holds:

��αa+ βb� ≤ α���a�2 + β2C�b− a�2�1/2 + β���b�2 + α2C�b− a�2�1/2�(58)

Squaring this inequality and bringing all the terms to the same side one gets

0≤2βα���a�2 + β2C�b− a�2�1/2 × ���b�2 + α2C�b− a�2�1/2
−���αa+ βb�2 − α2��a�2 − β2��b�2 − 2�α2β2�C�b− a�2��

(59)

Since the sum of the first and the last term is nonnegative, we can multiply by
it without changing the sign of the inequality. After simple transformations
we get the following equivalent condition:

0≤4β2α2���a�2��b�2 +C�b− a�2���a�2α2 +��b�2β2��
−A2 + 4�α2β2�AC�b− a�2�

(60)

where we have set

A ≡ ��αa+ βb�2 − α2��a�2 − β2��b�2�(61)

Using this we arrive at

C ≥ C�a� b� ≡ A2 − 4β2α2��a�2��b�2
�b− a�24β2α2��αa+ βb�2 �(62)

Using the definition of A, we note that

A2 − 4β2α2��a�2��b�2=���αa+ βb�2 − �α��a� + β��b��2�
× ���αa+ βb�2 − �α��a� − β��b��2��

(63)
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Hence we can bound the right-hand side of (62) as follows:

C�a� b� ≤ ��αa+ βb�2 − �α��a� + β��b��2
4β2α2�b− a�2 �(64)

Setting x ≡ αa+ βb and t ≡ b− a, one can see that the function

F�t� ≡ ��x� − �α��x− βt� + β��x+ αt��
defined for t ∈ �max�−x/β� �x−1�/α��min��1−x�/β� x/α��, is a smooth func-
tion which equals to zero at t = 0 together with its first derivative. Since �
has a bounded second derivative on any closed interval �ε�1−ε�, we can show
that C�a� b� is uniformly bounded in any such interval. On the other hand for
sufficiently small ε > 0 we have the following representation:

��y� = y
(
2 log

1
y
− 2 log�2π� +O

(
log log

1
y

))1/2

(65)

for any 0 < y < ε and 1 − ε < y < 1, which follows from the detailed esti-
mates on the distribution of the standard Gaussian measure (see, e.g., [7],
Chapter VII, Section 6). Thus it is sufficient to show that the following func-
tion is bounded:

� �αa+ βb�2 − �α� �a� + β� �b��2
4β2α2�b− a�2 �(66)

where � �y� ≡ y�2 log 1
y
�1/2, for any 0 < a < b < ε. The case 0 < b < a < ε

is similar, whereas on the diagonal a = b, the l’Hospital rule together with
the fact that �′′� = −1 easily gives us an explicit bound C�a� a� ≤ 1/4βα.
[Since � is symmetric with respect to the midpoint of its domain, analogous
estimates are true in �1 − ε�1�.] By explicit computations for 0 < a < b

2 , we
have

� �αa+βb�2−�α� �a�+β� �b��2
�b−a�2

≤8α2a
b

2
log

1

α+βb
a

+8β2log
1

αa
b
+β

+16αβa
b
log

1
αa
b
+β+16αβ

a

b

(
log

1
b

)1/2{(
log

1
b

)1/2

−
(
log

1
a

)1/2}
�

(67)

Hence we get

� �αa+ βb�2 − �α� �a� + β� �b��2
�b− a�2 ≤8α2

a

b

2
log

1
α
+ 8β2 log

1
β

+16αβ
a

b
log

1
β
+ 16αβ

a

b
log

a

b
�

(68)
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Consider now the region b
2 < a < b. Our function F�t� satisfies F�0� = 0 and

F′�0� = 0, and we have

F′′�t�=βα�−β�′′�x− βt� − α�′′�x+ αt��

=βα
(

α

��x+ αt� +
β

��x− βt�
)
�

(69)

Hence

��αa+ βb�2 − �α��a� + β��b��2
4β2α2�b− a�2

≤ 1
2
F′′�ϑt�
4β2α2

· ���αa+ βb� + α��a� + β��b��
(70)

with some ϑ ∈ �0�1� Since on the interval �0� 12 � the function � is increasing,
we get the following estimate on the right-hand side of (70):

��αa+ βb�2 − �α��a� + β��b��2
4β2α2�b− a�2 ≤ 1

4βα
· ��b�
��a� �(71)

Finally using the fact that

lim
x→0

��x�
x�2 log 1

x
�1/2 = 1(72)

and our present condition b
2 ≤ a ≤ b < ε, with sufficiently small ε > 0, we get

��b�
��a� < 2�(73)

This together with (71) implies that for b
2 ≤ a ≤ b < ε, we have

��αa+ βb�2 − �α��a� + β��b��2
4β2α2�b− a�2 ≤ 2

4βα
�(74)

This ends the proof of Lemma 4.1. ✷

As a useful corollary we get the following property.

Lemma 4.2. There is a constant C ∈ �0�∞� such that, for any 	 ⊂ �d and
ω ∈ 
, we have

��µω	f� ≤ µω	���f�2 +C�∇if�2�1/2(75)

provided the function 0 ≤ f ≤ 1 depends only on the one variable ωi.

Proof. The proof follows from Lemma 4.1 and the fact that by our assump-
tion we have

1
2e
−2�)� ≤ µω	�ωi = ±1� ≤ 1� ✷

Given this lemma we are ready to prove the following main result of this
section.
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Theorem 4.3. For any 	 ⊂ �d there is a constant C	 ∈ �0�∞� such that
for any ω ∈ 
 and any function 0 ≤ f ≤ 1 we have

��µω	f� ≤ µω	���f�2 +C	�∇	f�22�1/2�(76)

Proof. Obviously by Lemma 4.2 the result is true with one point sets.
Suppose the result holds for some 	 ⊂ �d. We will show that this is also true
for 	 ∪ �i� for any i ∈ �d. To this end we observe that, setting F ≡ µω	f, by
Lemma 4.2 we get

��µω	∪�i�f� = ��µω	∪�i�F� ≤ µω	∪�i����F�2 +C�∇iF�2�1/2�(77)

Now by our inductive assumption we have

��F� = ��µω	f� ≤ µω	���f�2 +C	�∇	f�22�1/2(78)

On the other hand our local specification is regular, so by Theorem 3.2 we get

�∇iF� = �∇i�µω	f�� ≤
∑

j∈	∪�i�
α
�	�
ij µ

ω
	�∇jf��(79)

Inserting (78) and (79) into the right-hand side of (77), using the Minkowski
and Hölder inequalities, we arrive at the following inequality:

��µω	∪�i�f� ≤ µω	∪�i����f�2 +C	∪�i��∇	∪�i�f�22�1/2(80)

with

C	∪�i� ≤ C	 +Cmax
i�j

( ∑
k∈	∪�i�

α
�	�
ik

)
α
�	�
ij �(81)

This ends the proof of Theorem 4.3. ✷

This, together with the results of the previous sections, completes the proof
of the following theorem.

Theorem 4.4. Suppose a local specification �µω	�	∈� �ω∈
 corresponding to
a potential ) of finite range satisfies the strong mixing condition. Then the
corresponding unique Gibbs measure µ satisfies the following BBL2 inequality
with some coefficient C ∈ �0�∞�,

��µf� ≤ µ���f�2 +C�∇f�22�1/2(82)

for any function 0 ≤ f ≤ 1 for which the right-hand side is finite.

Remark 4.5. A careful reader could notice that, if the strong mixing con-
dition is satisfied, one can utilize the idea of the proof of Theorem 4.3 to get
yet another, (nice in some other way) proof of the BBL2 inequality for a Gibbs
measure. (See also Remark 2.5.)

From this result, one gets the following corollary.
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Theorem 4.6. Suppose a local specification �µω	�	∈� �ω∈
 corresponding to
a potential ) of finite range satisfies the strong mixing condition. Then the cor-
responding unique Gibbs measure µ satisfies the logarithmic Sobolev inequal-
ity with the coefficient C ∈ �0�∞�,

µ�f2 log �f�/µ�f2�1/2� ≤ Cµ�∇f�22(83)

for any function f for which the right-hand side is finite.

5. Summary. In this paper we have introduced a family of functional
inequalities which have a form suitable for studying the isoperimetry in the
infinite-dimensional setting. We have shown that such an inequality holds true
for a Gibbs measure provided it is satisfied for a related finite-dimensional
conditional expectation together with a strong mixing condition. In the spe-
cial case p = 2 we have verified the required conditions and shown that
BBL 2 inequality is true for a large class of nontrivial measures. Besides other
things, this helps to recover some well-known results concerning the logarithic
Sobolev inequality [15] (possibly with better estimates on the relevant coeffi-
cients).

It is natural to suppose that the BBLp inequalities with p ∈ �1�2� will
help us to understand better the sub-Gaussian measures which are rather
poorly studied. To motivate that let us consider the boundary case p = 1.
We begin from a double-sided Poisson measure ν�dx� on 
 = � with density
ϕν�x� ≡ 1

2e
−�x� and distribution Fν. We use it to define a local specification

Eω	 ≡ Eω	�), 	 ∈ � , ω ∈ 
 ≡ ��d , corresponding to a smooth bounded potential
of finite range. Let µ) be a Gibbs measure corresponding to this potential. We
have the following result.

Theorem 5.1. If the potential ) is sufficiently small, then the unique Gibbs
measure µ) satisfies BBL1 with the isoperimetric function �1 of the double-
sided Poisson measure.

The proof follows from the fact that the double sided Poisson measure
satisfiesBBL1 with the function�1�x� ≡ ϕν�F−1ν �x�� ≡ min�x�1−x�, x∈ �0�1�,
(see [3]) together with simple perturbation arguments which allow showing
the desired inequality for a single site conditional expectaion Ei� i ∈ �d. The
strong mixing condition is easy to see in the present context.

It is interesting to conjecture that a similar result remains true when the
Poisson measure is replaced by a measure νq�dx� ≡ 1

Z
e−�x�

q
dx with q > 1 and

a corresponding isoperimetric function �q.

6. Addendum. Since this work was done, some interesting progress in
this domain has appeared on which we would like to report briefly for the
benefit of the reader.

In particular, we mention a very interesting preprint by Pierre Fougéres [8]
in which he shows (by some semigroup technique using the finite curvature
assumption) that in the case of diffusions the logarithmic Sobolev inequalities
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are actually equivalent to BBL2. (Recall that implication BBL2 ⇒ LS was
proved in [5].) Since his method utilizes some optimization procedure, the
coefficient at BBL2 does not need to coincide with the log-Sobolev coefficient,
(contrary to the converse implication of [5]). On the other hand it could be
used to show BBL2 in a finite dimension and, by our inductive procedure
extended to the corresponding Gibbs measure, which in order (via the Bakry–
Ledoux route) would yield an improved estimation for the logarithmic Sobolev
constant.

In the discrete case in [8], the author obtains weaker inequalities than
BBL2. In that case the advantage of our method is also that it applies to
Markov chains and their stationary measures (which even in the case of a
quite simple transition matrix may not be a Gibbs measure associated to any
reasonable interaction potential).

Finally we recall that concentration of measure estimates and isoperimetry
were studied extensively in the past in the case of product measures; see, for
example, [17–19] and references therein (see also [2], [3] and [4] for further
references), with application to a number of problems including, for example,
the problem of bin packing, the traveling salesman problem, spin glasses,
longest common/increasing sequances, etc. More recently it has been shown
[4] (also in the case of product measures) that one can use BBL2 to obtain
optimal constants in some concentration inequalities of Talagrand. Our work
provides a possibility of the extension of such results to the case of nontrivial
measures.
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