Open Access
2013 Positive Toeplitz operators on the Bergman space
Namita Das, Madhusmita Sahoo
Ann. Funct. Anal. 4(2): 171-182 (2013). DOI: 10.15352/afa/1399899534

Abstract

‎In this paper we find conditions on the existence of bounded linear‎ ‎operators $A$ on the Bergman space $L_{a}^{2}(\mathbb{D})$ such that‎ ‎$A^{\ast}T_{\phi}A\geq S_{\psi}$ and $A^{\ast}T_{\phi}A\geq‎ ‎T_{\phi}$ where $T_{\phi}$ is a positive Toeplitz operator on‎ ‎$L_{a}^{2}(\mathbb{D})$ and $S_{\psi}$ is a self-adjoint little‎ ‎Hankel operator on $L_{a}^{2}(\mathbb{D})$ with symbols $\phi‎, ‎\psi\in L^{\infty}(\mathbb{D})$ respectively‎. ‎Also we show that if‎ ‎$T_{\phi}$ is a non-negative Toeplitz operator then there exists a‎ ‎rank one operator $R_{1}$ on $L_{a}^{2}(\mathbb{D})$ such that‎ ‎$\widetilde{\phi}(z)\geq \alpha^{2}\widetilde{R_{1}}(z)$ for some‎ ‎constant $\alpha\geq 0$ and for all $z\in \mathbb{D}$ where‎ ‎$\widetilde{\phi}$ is the Berezin transform of $T_{\phi}$ and‎ ‎$\widetilde{R_{1}}(z)$ is the Berezin transform of $R_{1}$‎.

Citation

Download Citation

Namita Das. Madhusmita Sahoo. "Positive Toeplitz operators on the Bergman space." Ann. Funct. Anal. 4 (2) 171 - 182, 2013. https://doi.org/10.15352/afa/1399899534

Information

Published: 2013
First available in Project Euclid: 12 May 2014

zbMATH: 1277.47039
MathSciNet: MR3034939
Digital Object Identifier: 10.15352/afa/1399899534

Subjects:
Primary: 47B15
Secondary: 47B35

Keywords: ‎Berezin transform , Bergman space , Little Hankel operators , ‎positive operators , Toeplitz operators

Rights: Copyright © 2013 Tusi Mathematical Research Group

Vol.4 • No. 2 • 2013
Back to Top