Open Access
2013 Convexity‎, ‎Subadditivity and Generalized Jensen's Inequality
Shoshana Abramovich
Ann. Funct. Anal. 4(2): 183-194 (2013). DOI: 10.15352/afa/1399899535

Abstract

‎In this paper we extend some theorems published lately on the relationship‎ ‎between convexity/concavity‎, ‎and subadditivity/superadditivity‎. ‎We also‎ ‎generalize inequalities of compound functions that refine Minkowski‎ ‎inequality‎.

Citation

Download Citation

Shoshana Abramovich. "Convexity‎, ‎Subadditivity and Generalized Jensen's Inequality." Ann. Funct. Anal. 4 (2) 183 - 194, 2013. https://doi.org/10.15352/afa/1399899535

Information

Published: 2013
First available in Project Euclid: 12 May 2014

zbMATH: 1282.47021
MathSciNet: MR3034940
Digital Object Identifier: 10.15352/afa/1399899535

Subjects:
Primary: 47A63
Secondary: 26D15 , 47A07

Keywords: convexity , Hölder's inequality , Jensen's inequality , ‎Minkowski's inequality , subadditivity‎

Rights: Copyright © 2013 Tusi Mathematical Research Group

Vol.4 • No. 2 • 2013
Back to Top