Open Access
December 2014 Nonparametric inference in a stereological model with oriented cylinders applied to dual phase steel
K. S. McGarrity, J. Sietsma, G. Jongbloed
Ann. Appl. Stat. 8(4): 2538-2566 (December 2014). DOI: 10.1214/14-AOAS787
Abstract

Oriented circular cylinders in an opaque medium are used to represent certain microstructural objects in steel. The opaque medium is sliced parallel to the cylinder axes of symmetry and the cut-plane contains the observable rectangular profiles of the cylinders. A one-to-one relation between the joint density of the squared radius and height of the 3D cylinders and the joint density of the squared half-width and height of the observable 2D rectangles is established. We propose a nonparametric estimation procedure to estimate the distributions and expectations of various quantities of interest, such as the cylinder radius, height, aspect ratio, surface area and volume from the observed 2D rectangle widths and heights. Also, the covariance between the radius and height of a cylinder is estimated. The asymptotic behavior of these estimators is established to yield point-wise confidence intervals for the expectations and point-wise confidence sets for the distributions of the quantities of interest. Many of these quantities can be linked to the mechanical properties of the material, and are, therefore, useful for industry. We illustrate the mathematical model and estimation procedures using a banded microstructure for which nearly 90 μm of depth have been observed via serial sectioning.

References

1.

Andersen, S. J., Holme, B. and Marioara, C. D. (2008). Quantification of small, convex particles by TEM. Ultramicroscopy 108 750–762.Andersen, S. J., Holme, B. and Marioara, C. D. (2008). Quantification of small, convex particles by TEM. Ultramicroscopy 108 750–762.

2.

Anevski, D. and Soulier, P. (2011). Monotone spectral density estimation. Ann. Statist. 39 418–438. MR2797852 10.1214/10-AOS804 euclid.aos/1297779852 Anevski, D. and Soulier, P. (2011). Monotone spectral density estimation. Ann. Statist. 39 418–438. MR2797852 10.1214/10-AOS804 euclid.aos/1297779852

3.

Bolte, S. and Cordelières, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224 213–232. MR2312809 10.1111/j.1365-2818.2006.01706.xBolte, S. and Cordelières, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224 213–232. MR2312809 10.1111/j.1365-2818.2006.01706.x

4.

Chow, Y. S. and Teicher, H. (1988). Probability Theory: Independence, Interchangeability, Martingales, 2nd ed. Springer, New York. MR953964Chow, Y. S. and Teicher, H. (1988). Probability Theory: Independence, Interchangeability, Martingales, 2nd ed. Springer, New York. MR953964

5.

Cruz-Orive, L. M. and Weibel, E. R. (1990). Recent stereological methods for cell biology: A brief survey. American Journal of Physiology 258 L148–L156.Cruz-Orive, L. M. and Weibel, E. R. (1990). Recent stereological methods for cell biology: A brief survey. American Journal of Physiology 258 L148–L156.

6.

Cruz-Orive, L.-M., Hoppeler, H., Mathieu, O. and Weibel, E. R. (1985). Stereological analysis of anisotropic structures using directional statistics. J. Roy. Statist. Soc. Ser. C 34 14–32. MR793336Cruz-Orive, L.-M., Hoppeler, H., Mathieu, O. and Weibel, E. R. (1985). Stereological analysis of anisotropic structures using directional statistics. J. Roy. Statist. Soc. Ser. C 34 14–32. MR793336

7.

Fullman, R. L. (1953). Measurement of particle sizes in opaque bodies. Transactions AIME (Journal of Metals) 197 447–452.Fullman, R. L. (1953). Measurement of particle sizes in opaque bodies. Transactions AIME (Journal of Metals) 197 447–452.

8.

Giumelli, A. K., Militzer, M. and Hawbolt, E. B. (1999). Analysis of the austenite grain size distribution in plain carbon steels. ISIJ International 39 271–280.Giumelli, A. K., Militzer, M. and Hawbolt, E. B. (1999). Analysis of the austenite grain size distribution in plain carbon steels. ISIJ International 39 271–280.

9.

Groeneboom, P. and Jongbloed, G. (1995). Isotonic estimation and rates of convergence in Wicksell’s problem. Ann. Statist. 23 1518–1542. MR1370294 10.1214/aos/1176324310 euclid.aos/1176324310 Groeneboom, P. and Jongbloed, G. (1995). Isotonic estimation and rates of convergence in Wicksell’s problem. Ann. Statist. 23 1518–1542. MR1370294 10.1214/aos/1176324310 euclid.aos/1176324310

10.

Groeneboom, P. and Jongbloed, G. (2010). Generalized continuous isotonic regression. Statist. Probab. Lett. 80 248–253. MR2575453Groeneboom, P. and Jongbloed, G. (2010). Generalized continuous isotonic regression. Statist. Probab. Lett. 80 248–253. MR2575453

11.

Hall, P. and Smith, R. L. (1988). The kernel method for unfolding sphere size distributions. J. Comput. Phys. 74 409–421. MR930210 10.1016/0021-9991(88)90085-XHall, P. and Smith, R. L. (1988). The kernel method for unfolding sphere size distributions. J. Comput. Phys. 74 409–421. MR930210 10.1016/0021-9991(88)90085-X

12.

Higgins, M. D. (2000). Measurement of crystal size distributions. American Mineralogist 85 1105–1116.Higgins, M. D. (2000). Measurement of crystal size distributions. American Mineralogist 85 1105–1116.

13.

Jensen, D. G. (1995). Estimation of the size distribution of spherical, disc-like or ellipsoidal particles in thin foil. Journal of Physics D: Applied Physics 28 549–558.Jensen, D. G. (1995). Estimation of the size distribution of spherical, disc-like or ellipsoidal particles in thin foil. Journal of Physics D: Applied Physics 28 549–558.

14.

Jeppsson, J., Mannesson, K., Borgenstam, A. and Ågren, J. (2011). Inverse Saltykov analysis for particle-size distributions and their time evolution. Acta Materialia 59 874–882.Jeppsson, J., Mannesson, K., Borgenstam, A. and Ågren, J. (2011). Inverse Saltykov analysis for particle-size distributions and their time evolution. Acta Materialia 59 874–882.

15.

Li, M., Ghosh, S., Richmond, O., Weiland, H. and Rouns, T. N. (1999). Three dimensional characterization and modeling of particle reinforced metal matrix composites: Part I quantitative description of microstructural morphology. Materials Science and Engineering A A265 153–173.Li, M., Ghosh, S., Richmond, O., Weiland, H. and Rouns, T. N. (1999). Three dimensional characterization and modeling of particle reinforced metal matrix composites: Part I quantitative description of microstructural morphology. Materials Science and Engineering A A265 153–173.

16.

Mase, S. (1995). Stereological estimation of particle size distributions. Adv. in Appl. Probab. 27 350–366. MR1334818 10.2307/1427830Mase, S. (1995). Stereological estimation of particle size distributions. Adv. in Appl. Probab. 27 350–366. MR1334818 10.2307/1427830

17.

Mayhew, T. M. (1991). The new stereological methods for interpreting functional morphology from slices of cells and organs. Exp. Physiol. 76 639–665.Mayhew, T. M. (1991). The new stereological methods for interpreting functional morphology from slices of cells and organs. Exp. Physiol. 76 639–665.

18.

McGarrity, K. S. (2013). Stochastic modeling of anisotropic microstructural features in metals. Ph.D. thesis, Technical Univ. Delft.McGarrity, K. S. (2013). Stochastic modeling of anisotropic microstructural features in metals. Ph.D. thesis, Technical Univ. Delft.

19.

McGarrity, K. S., Sietsma, J. and Jongbloed, G. (2012a). Characterisation and quantification of microstructural banding in dual phase steels part I: A general 2D study. Materials Science and Technology 28 895–902.  DOI:10.1179/1743284712Y.0000000004.McGarrity, K. S., Sietsma, J. and Jongbloed, G. (2012a). Characterisation and quantification of microstructural banding in dual phase steels part I: A general 2D study. Materials Science and Technology 28 895–902.  DOI:10.1179/1743284712Y.0000000004.

20.

McGarrity, K. S., Sietsma, J. and Jongbloed, G. (2012b). Characterization and quantification of microstructural banding in dual phase steels part II: A case study extending to 3D. Materials Science and Technology 28 903–910.  DOI:10.1179/1743284712Y.0000000028.McGarrity, K. S., Sietsma, J. and Jongbloed, G. (2012b). Characterization and quantification of microstructural banding in dual phase steels part II: A case study extending to 3D. Materials Science and Technology 28 903–910.  DOI:10.1179/1743284712Y.0000000028.

21.

McGarrity, K. S., Sietsma, J. and Jongbloed, G. (2014). Supplement to “Nonparametric inference in a stereological model with oriented cylinders applied to dual phase steel.”  DOI:10.1214/14-AOAS787SUPPMR3292508 10.1214/14-AOAS787 euclid.aoas/1419001754 McGarrity, K. S., Sietsma, J. and Jongbloed, G. (2014). Supplement to “Nonparametric inference in a stereological model with oriented cylinders applied to dual phase steel.”  DOI:10.1214/14-AOAS787SUPPMR3292508 10.1214/14-AOAS787 euclid.aoas/1419001754

22.

Mehnert, K., Ohser, J. and Klimanek, P. (1998). Testing stereological methods for the estimation of spatial size distributions by means of computer-simulated grain structures. Materials Science and Engineering A 246 207–212.Mehnert, K., Ohser, J. and Klimanek, P. (1998). Testing stereological methods for the estimation of spatial size distributions by means of computer-simulated grain structures. Materials Science and Engineering A 246 207–212.

23.

Miyamoto, K. (1994). Particle number and sizes estimated from sections—A history of stereology. In Research of Pattern Formation 507–516. KTK Scientific Publishers, Tokyo.Miyamoto, K. (1994). Particle number and sizes estimated from sections—A history of stereology. In Research of Pattern Formation 507–516. KTK Scientific Publishers, Tokyo.

24.

Oakeshott, R. B. S. and Edwards, S. F. (1992). On the stereology of ellipsoids and cylinders. Phys. A 189 208–233. MR1187504 10.1016/0378-4371(92)90135-DOakeshott, R. B. S. and Edwards, S. F. (1992). On the stereology of ellipsoids and cylinders. Phys. A 189 208–233. MR1187504 10.1016/0378-4371(92)90135-D

25.

Ohser, J. and Mücklich, F. (2000). Statistical Analysis of Microstructures in Materials Science. Wiley, New York.Ohser, J. and Mücklich, F. (2000). Statistical Analysis of Microstructures in Materials Science. Wiley, New York.

26.

Rasband, W. S. (1997–2009). ImageJ. Available at  http://rsb.info.nih.gov/ij/. U.S. National Institutes of Health, Bethesda, MD.Rasband, W. S. (1997–2009). ImageJ. Available at  http://rsb.info.nih.gov/ij/. U.S. National Institutes of Health, Bethesda, MD.

27.

Russ, J. C. and Dehoff, R. T. (2000). Practical Stereology, 2nd ed. Plenum Press, New York, NY.Russ, J. C. and Dehoff, R. T. (2000). Practical Stereology, 2nd ed. Plenum Press, New York, NY.

28.

Sahagian, Dork. L. and Proussevitch, A. A. (1998). 3D particle size distributions from 2D observations: Stereology for natural applications. Journal of Volcanology and Geothermal Research 84 173–196.Sahagian, Dork. L. and Proussevitch, A. A. (1998). 3D particle size distributions from 2D observations: Stereology for natural applications. Journal of Volcanology and Geothermal Research 84 173–196.

29.

Sen, B. and Woodroofe, M. (2012). Bootstrap confidence intervals for isotonic estimators in a stereological problem. Bernoulli 18 1249–1266. MR2995794 10.3150/12-BEJ378 euclid.bj/1352727809 Sen, B. and Woodroofe, M. (2012). Bootstrap confidence intervals for isotonic estimators in a stereological problem. Bernoulli 18 1249–1266. MR2995794 10.3150/12-BEJ378 euclid.bj/1352727809

30.

Silverman, B. W., Jones, M. C., Nychka, D. W. and Wilson, J. D. (1990). A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography. J. R. Stat. Soc. Ser. B Stat. Methodol. 52 271–324. MR1064419Silverman, B. W., Jones, M. C., Nychka, D. W. and Wilson, J. D. (1990). A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography. J. R. Stat. Soc. Ser. B Stat. Methodol. 52 271–324. MR1064419

31.

Spiess, M. and Spodarev, E. (2011). Anisotropic Poisson processes of cylinders. Methodol. Comput. Appl. Probab. 13 801–819. MR2851838 10.1007/s11009-010-9193-8Spiess, M. and Spodarev, E. (2011). Anisotropic Poisson processes of cylinders. Methodol. Comput. Appl. Probab. 13 801–819. MR2851838 10.1007/s11009-010-9193-8

32.

Tewari, A. and Gokhale, A. M. (2001). Estimation of three-dimensional grain size distribution from microstructural serial sections. Mater. Charact. 46 329–335.Tewari, A. and Gokhale, A. M. (2001). Estimation of three-dimensional grain size distribution from microstructural serial sections. Mater. Charact. 46 329–335.

33.

Thouless, M. D., Dalgleish, B. J. and Evans, A. G. (1988). Determining the shape of cylindrical second phases by two-dimensional sectioning. Materials Science and Engineering A 102 57–68.Thouless, M. D., Dalgleish, B. J. and Evans, A. G. (1988). Determining the shape of cylindrical second phases by two-dimensional sectioning. Materials Science and Engineering A 102 57–68.

34.

van Es, B. and Hoogendoorn, A. (1990). Kernel estimation in Wicksell’s corpuscle problem. Biometrika 77 139–145. MR1049415 10.1093/biomet/77.1.139van Es, B. and Hoogendoorn, A. (1990). Kernel estimation in Wicksell’s corpuscle problem. Biometrika 77 139–145. MR1049415 10.1093/biomet/77.1.139

35.

Wicksell, S. D. (1925). A mathematical study of a biometric problem. Biometrika 17 84–99.Wicksell, S. D. (1925). A mathematical study of a biometric problem. Biometrika 17 84–99.
Copyright © 2014 Institute of Mathematical Statistics
K. S. McGarrity, J. Sietsma, and G. Jongbloed "Nonparametric inference in a stereological model with oriented cylinders applied to dual phase steel," The Annals of Applied Statistics 8(4), 2538-2566, (December 2014). https://doi.org/10.1214/14-AOAS787
Published: December 2014
Vol.8 • No. 4 • December 2014
Back to Top