Translator Disclaimer
December 2014 Reduced-rank spatio-temporal modeling of air pollution concentrations in the Multi-Ethnic Study of Atherosclerosis and Air Pollution
Casey Olives, Lianne Sheppard, Johan Lindström, Paul D. Sampson, Joel D. Kaufman, Adam A. Szpiro
Ann. Appl. Stat. 8(4): 2509-2537 (December 2014). DOI: 10.1214/14-AOAS786

Abstract

There is growing evidence in the epidemiologic literature of the relationship between air pollution and adverse health outcomes. Prediction of individual air pollution exposure in the Environmental Protection Agency (EPA) funded Multi-Ethnic Study of Atheroscelerosis and Air Pollution (MESA Air) study relies on a flexible spatio-temporal prediction model that integrates land-use regression with kriging to account for spatial dependence in pollutant concentrations. Temporal variability is captured using temporal trends estimated via modified singular value decomposition and temporally varying spatial residuals. This model utilizes monitoring data from existing regulatory networks and supplementary MESA Air monitoring data to predict concentrations for individual cohort members.

In general, spatio-temporal models are limited in their efficacy for large data sets due to computational intractability. We develop reduced-rank versions of the MESA Air spatio-temporal model. To do so, we apply low-rank kriging to account for spatial variation in the mean process and discuss the limitations of this approach. As an alternative, we represent spatial variation using thin plate regression splines. We compare the performance of the outlined models using EPA and MESA Air monitoring data for predicting concentrations of oxides of nitrogen ($\mathrm{NO}_{x}$)—a pollutant of primary interest in MESA Air—in the Los Angeles metropolitan area via cross-validated $R^{2}$.

Our findings suggest that use of reduced-rank models can improve computational efficiency in certain cases. Low-rank kriging and thin plate regression splines were competitive across the formulations considered, although TPRS appeared to be more robust in some settings.

Citation

Download Citation

Casey Olives. Lianne Sheppard. Johan Lindström. Paul D. Sampson. Joel D. Kaufman. Adam A. Szpiro. "Reduced-rank spatio-temporal modeling of air pollution concentrations in the Multi-Ethnic Study of Atherosclerosis and Air Pollution." Ann. Appl. Stat. 8 (4) 2509 - 2537, December 2014. https://doi.org/10.1214/14-AOAS786

Information

Published: December 2014
First available in Project Euclid: 19 December 2014

zbMATH: 06408788
MathSciNet: MR3292507
Digital Object Identifier: 10.1214/14-AOAS786

Rights: Copyright © 2014 Institute of Mathematical Statistics

JOURNAL ARTICLE
29 PAGES


SHARE
Vol.8 • No. 4 • December 2014
Back to Top