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NONPARAMETRIC INFERENCE IN A STEREOLOGICAL MODEL
WITH ORIENTED CYLINDERS APPLIED TO DUAL

PHASE STEEL1

BY K. S. MCGARRITY∗,†, J. SIETSMA† AND G. JONGBLOED†

Materials innovation institute (M2i)∗ and Delft University of Technology†

Oriented circular cylinders in an opaque medium are used to represent
certain microstructural objects in steel. The opaque medium is sliced parallel
to the cylinder axes of symmetry and the cut-plane contains the observable
rectangular profiles of the cylinders. A one-to-one relation between the joint
density of the squared radius and height of the 3D cylinders and the joint
density of the squared half-width and height of the observable 2D rectangles
is established. We propose a nonparametric estimation procedure to estimate
the distributions and expectations of various quantities of interest, such as
the cylinder radius, height, aspect ratio, surface area and volume from the
observed 2D rectangle widths and heights. Also, the covariance between the
radius and height of a cylinder is estimated. The asymptotic behavior of these
estimators is established to yield point-wise confidence intervals for the ex-
pectations and point-wise confidence sets for the distributions of the quan-
tities of interest. Many of these quantities can be linked to the mechanical
properties of the material, and are, therefore, useful for industry. We illus-
trate the mathematical model and estimation procedures using a banded mi-
crostructure for which nearly 90 µm of depth have been observed via serial
sectioning.

1. Introduction. One of the biggest challenges of studying materials like
steel is the inability to see inside of an opaque medium. While there are methods to
obtain three-dimensional (3D) information, they tend to be costly both in terms of
time and resources. Methods like serial sectioning are destructive to the material
and require long periods of time to collect a reasonable amount of data. Non-
destructive methods such as synchotron radiation are expensive and can only be
performed at specialized laboratories. The discipline of stereology provides many
tools to confront these issues in the sense that there are well established models
that provide means of estimating various 3D quantities based on (relatively inex-
pensive) two-dimensional (2D) observations and measurements; see, for example,
Mayhew (1991), Ohser and Mücklich (2000), Russ and Dehoff (2000). A classi-
cal example comes from a study by Wicksell (1925) where the size distribution of
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spherical corpuscles in spleens is estimated based on measuring the circular cross-
sections from slices of the spleens. Wicksell derived the relationship between the
distribution of the unobservable sphere radii and the distribution of the observ-
able cross-sectional circle radii. He then used the empirical data and a histogram
estimator to solve his particular problem.

This basic stereological model has been applied in a variety of disciplines where
it is not possible to obtain full 3D measurements of objects simply by looking
at them; this includes biology, geology, astronomy and materials science: [Cruz-
Orive and Weibel (1990), Giumelli, Militzer and Hawbolt (1999), Higgins (2000),
Jeppsson et al. (2011), Miyamoto (1994), Sahagian and Proussevitch (1998), Sen
and Woodroofe (2012), Tewari and Gokhale (2001)]. Not surprisingly, the method
has also gained considerable attention in the statistics literature. There, the main
focus is on computation and asymptotic behavior of the proposed estimators [Cruz-
Orive et al. (1985), Mase (1995), Sen and Woodroofe (2012), Silverman et al.
(1990), van Es and Hoogendoorn (1990)].

In several applications the particles of interest are spheres, or close enough to be
treated as such. However, in many other applications the particles are not spherical
at all, and so it is important to also consider models with nonspherical particles.
The basic model with spheres has been extended to randomly oriented cylinders,
polygons, spheroids and ellipsoids, and nonregular shapes [Andersen, Holme and
Marioara (2008), Fullman (1953), Giumelli, Militzer and Hawbolt (1999), Higgins
(2000), Jensen (1995), Li et al. (1999), Mehnert, Ohser and Klimanek (1998),
Oakeshott and Edwards (1992), Sahagian and Proussevitch (1998), Spiess and
Spodarev (2011), Thouless, Dalgleish and Evans (1988)].

All of this has led to a large body of work from which information of interest to
scientists, engineers and industry can be drawn. The tools that have been created
are powerful in their versatility. They can be applied to real materials, to models
and simulations. They can also be studied from a theoretical point of view. The
specific motivation for this current work comes from banded steel microstructures,
like the one shown in Figure 1. The industry is interested in this particular material
because it has anisotropic properties, high susceptibility to cracking and corrosion,
and it is more difficult to machine than nonbanded material. This anisotropy can
arise either from the particular chemistry of the steel or during the rolling phase
when blocks of steel are flattened into sheets and rolled into coils. Currently, there
is no reliable way to prevent or control the banding under certain necessary pro-
cessing environments. Being able to quantitatively describe the sizes of the bands
in 3D will greatly aid industry in assessing the quality of the material and the ex-
tent of the effects the bands have on the material coming off the production line.
Ultimately, this will also aid in understanding and controlling the process that leads
to band formation, thereby making it possible to eliminate them from the material
when they are undesirable.

In this paper, we propose a simple model in which we use randomly sized,
oriented cylinders to represent the microstructural bands. Following the example
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FIG. 1. Optical image of a banded steel microstructure.

set forth by Wicksell (1925) when he considered spherical corpuscles observed in
spleens, we will consider the marginal distributions of the radius and height of the
cylinders. While most stereological models assume that nonspherical objects are
randomly oriented, in this case, it is clear that this assumption is not appropriate.
Therefore, by imposing the orientation constraints, we can explore other properties
of the cylinders, such as the volume, surface area and aspect ratio. These quantities
are important to estimate because they are linked to the mechanical properties
of the material. For example, the surface area can be linked to the interface area
between two phases, which determines properties like strength and resistance to
corrosion or cracking.

In this work, we propose two nonparametric estimators for estimating the dis-
tributions of the 3D cylinder quantities of interest from the 2D rectangle observa-
tions. One estimator enforces a monotonicity constraint, inspired by the work of
Groeneboom and Jongbloed (1995), the other does not. An empirical estimator is
used to estimate the expectations of the 3D quantities of interest from the 2D ob-
servations. The rates of convergence and asymptotic distributions for all of these
estimators are derived, which provide means of estimating the point-wise confi-
dence intervals for the expectations and point-wise confidence sets for the distri-
butions when the model is applied to the steel microstructures. While a parametric
estimator could perform better than the nonparametric estimators we propose here,
not enough is known about the bands within steel microstructures to assume any
particular distribution for the radius and height of the cylinders. Therefore, the first
step toward understanding this distribution is to study it nonparametrically and so
this work focuses on the empirical and isotonic estimators for understanding the
material.

This paper is organized as follows. The cylinder model is introduced in Sec-
tion 2. The nonparametric estimation procedures is described in Section 3 and the
asymptotic distributions and rates of convergence of the two different estimators
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are derived in Sections 4 and 5. A simulation for validation of the model is pre-
sented in Section 6 and, finally, in Section 7 the model is applied to the banded
microstructure.

2. Cylinder model. To represent the bands shown in Figure 1, the following
model is proposed (see Figure 2). Cylinders are generated with a joint density f

for the squared radius X [the choice to look at the squared radius is inspired by

FIG. 2. Visualization of the cylinder model. (a) Top view of cylinders in an M × M × M box with
a cut plane (dashed line) and slab Sx (solid lines) into which cylinder centers should fall to be cut
by the plane. (b) Schematic view,

√
X is the cylinder radius,

√
Z is the rectangle half-width, U is a

uniform random variable. (c) View of cut plane through the box. (d) Observations on the cut plane.
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Hall and Smith (1988)] and height H . The centers of these cylinders are cylinders
are placed such that their axes of symmetry all have the same orientation, as in
Figure 2(c). A cylinder with radius

√
x will be intersected by the plane if and only

if its center falls within slab Sx as shown in Figure 2(a). This leads to biased obser-
vations on the cut plane since cylinders with larger radii have a higher probability
of being intersected. More specifically, the joint cumulative distribution function
(CDF) of (X,H), given that the plane intersects the cylinder, can be written as

P(X ≤ x,H ≤ h|cylinder hits plane)

= P(X ≤ x,H ≤ h and cylinder hits plane)

P (cylinder hits plane)

=
∫ x
y=0

∫ h
m=0

√
yf (y,m)dmdy∫ ∞

y=0
∫ ∞
m=0

√
yf (y,m)dmdy

= 1

m+
F

∫ x

y=0

∫ h

m=0

√
yf (y,m)dmdy.

Here, since the probability that the cylinder is cut is proportional to the radius, the
density function f is weighted by the ratio of the radius of the cylinder,

√
x, to the

expected radius, Ef [√X] ≡ m+
F , which we assume to be finite (see Assumption 1).

Since the centers of the circles are uniformly distributed throughout the medium,
the distance from the center of a cylinder that has been cut to the intersecting plane
is a uniform random variable, as shown in Figure 2(b). This is analogous to the
relationship between the circle radii and sphere radii in the method set forth by
Wicksell (1925). Once a cylinder has been cut, the observable portion is seen as a
rectangle on the cut plane, as shown in Figure 2(d).

The rectangles have observable squared half-widths, z, and heights, h, that have
a joint density g. Since the cylinders are all cut parallel to their axis, all of the
height information for the cut cylinders is preserved and directly observable on
the cut-plane. (This shows that the distribution of the cylinder centers along the
direction of the heights does not require the uniform random assumption.) The
half-widths of the observed rectangles are related to the cylinder radii through the
relationship displayed in Figure 2(b). From these 2D observations, one can esti-
mate the 3D distribution where the relationship between g and f can be obtained
using a variant of the well-known formula relating the density of the rectangle
half-width (and height) to the distance of cylinder center to the cut plane and the
density of the cylinder radius (and height):

g(z,h) =
∫ ∞
x=z(x − z)−1/2f (x,h) dx

2
∫ ∞
x=0

√
xfX(x) dx

(1)

= 1

2m+
F

∫ ∞
x=z

(x − z)−1/2f (x,h) dx.
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This relation can be inverted to obtain the joint density for the cylinder radius and
height as a function of the observable rectangle joint density:

f (x,h) = − ∂

∂x

∫ ∞
z=x(z − x)−1/2g(z,h) dz∫ ∞

z=0 z−1/2gZ(z) dz
(2)

= − 1

m−
G

∂

∂x

∫ ∞
z=x

(z − x)−1/2g(z,h) dz,

where m−
G ≡ E[Z−1/2] is the expectation of one over the rectangle half-width

and is also assumed to be finite (see Assumption 1). From this relationship, the
distributions of univariate quantities of interest such as the height H , the squared
radius X, the aspect ratio R = √

X/H , the surface area S = 2π(X + √
XH), and

the volume V = πXH can be calculated.
The CDF for the observed height takes on the form

FH(h) =
∫ h

t=0
fH (t) dt = 1

m−
G

∫ h

t=0

∫ ∞
z=0

z−1/2g(z, t) dz dt.(3)

Note that this CDF still contains the weight associated with the bias from the ra-
dius of the cylinder. This accounts for any dependence that might exist between
the cylinder height and radius. Should such a dependence exist, the observed rect-
angle height distribution will also be biased. See Figure 4 and Section 4.4 for a
more detailed discussion of the biasing of the height observations associated with
a dependence of the height and radius.

For each of the other quantities of interest, define

q(h; t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

t, (squared radius T = X),

(ht)2, (aspect ratio T = √
X/H ),[√

h2

4
+ t

2π
− h

2

]2

,
(
surface area T = 2π(X + √

XH)
)
,

t

πh
, (volume T = πXH )

(4)

[see Appendix for a comprehensive review of the relationships between X,H,Z

and q(h; t)]. These functions are chosen such that the random variable of interest
T is such that T > t if and only if X > q(H ; t) for h, t > 0. Hence, using (2),

1 − FT (t) =
∫ ∞
h=0

∫ ∞
x=q(h;t)

f (x,h) dx dh = N(t)

N(0)
,(5)

where N is a bounded and decreasing function that can be rewritten as

N(t) = Nq(·;t)(t) =
∫ ∞
h=0

∫ ∞
z=q(h;t)

(
z − q(h; t))−1/2

g(z,h) dz dh.(6)

Note that (6) allows for expression of the CDF of the unobservable 3D cylin-
der properties in terms of a function N involving only the joint density g of the
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observable pair (Z,H). This suggests natural ways to estimate the CDFs of these
quantities, as will be discussed in Section 3. Also note that under Assumption 1,

N(t) ≤ N(0) = Eg

[
Z−1/2] < ∞.(7)

Along with the distribution functions, it is useful to estimate the expectations of
the quantities of interest. It is especially important to be able to express these 3D
quantities entirely as functions of the density g of the observable variables (Z,H).
This can be done using equation (1) with α,β > −1 (given that the moments exist),

Eg

[
ZαHβ] =

∫ ∞
h=0

∫ ∞
z=0

zαhβg(z,h) dz dh

(8)

=
√

π�(α + 1)

2m+
F �(α + 3/2)

Ef

[
Xα+1/2Hβ],

where m+
F is the same as that given in (1) and � is the Gamma function.

From these cross-moments, another important quantity of interest can be cal-
culated: the covariance between the radii and heights of the cylinders. From the
moments given in equation (8), the following expression is obtained for the covari-
ance between the unobservable radius

√
X and height H in terms of the observable

rectangle half-width
√

Z and height H :

Covf (
√

X,H) = σ√
XH

= Ef [√XH ] − Ef [√X]Ef [H ]
(9)

= (π/2)Eg[H ]
Eg[Z−1/2] − π/2

Eg[Z−1/2]
Eg[Z−1/2H ]
Eg[Z−1/2] .

The stated quantities of interest associated with the density f are now expressed
in terms of the density g of the observable quantities. The next section will de-
scribe empirical and isotonic estimation procedures that can be used to estimate
the unknown distributions and covariance.

3. Nonparametric estimation. The main statistical problem to solve is to es-
timate the quantities defined in terms of the joint density f , as introduced in Sec-
tion 2, based on the observed data from the joint density g. A natural estimator to
begin with in this case is the empirical or plug-in estimator.

Plugging the empirical distribution of the observed data pairs (Zi,Hi) (1 ≤ i ≤
n) into relations (3) and (6) yields

F̂H,n(h) =
∑n

i=1 Z
−1/2
i 1[Hi<h]∑n

i=1 Z
−1/2
i

(10)

as an estimator for the CDF of the heights and

Nn(t) = Ñn,q(·;t)(t) = 1

n

n∑
i=1

(
Zi − q(Hi; t))−1/21[Zi>q(Hi;t)](11)
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as estimators for the various choices of N dependent on q(h; t). These estimators
of N can be plugged into (5) to obtain the estimators for the CDFs of the various
quantities of interest.

The expectations of interest in equation (8) can be estimated by the empirical
mean:

Ê
[
ZαHβ] = 1

n

n∑
i=1

Zα
i H

β
i .(12)

In this way, the covariance between
√

X and H can be estimated by

σ̂
n,

√
XH

= (π/2)
∑n

i=1 Hi∑n
i=1 Z

−1/2
i

− π/2

n−1 ∑n
i=1 Z

−1/2
i

∑n
i=1 HiZ

−1/2
i∑n

i=1 Z
−1/2
i

.(13)

The empirical plug-in estimator works well for estimating the covariance and
yields a monotonic function for the estimate of the distribution function of the
height. This is not true, however, for Ñn. This estimator for N , which in view
of (5) is nonincreasing, is a nonmonotonic function; it even has poles due to the
vanishing denominator when q(Hi; t) = Zi . See, for example, Figure 3. Therefore,
inspired by the approach of Groeneboom and Jongbloed (1995), we introduce an
isotonic estimator, which enforces monotonicity, to obtain estimates for N and,
consequently, the underlying distribution functions of X, R, S and V .

Briefly, the isotonic estimator is the (nonincreasing) function N̂n that minimizes

N �→
∫ ∞

0
N(y)2 dy − 2

∫ ∞
0

Ñn(y)N(y) dy(14)

over all nonincreasing functions on [0,∞). It is tempting to “complete the square”
and choose to minimize the function

∫
(N(y) − Ñn(y))2 dy instead of (14), which

FIG. 3. The estimates for the underlying distribution of the volume (given by the simulation in
Section 6) for n = 50 cylinders. The underlying distribution is given by the dashed grey line, the
empirical plug-in estimate is given by the solid light grey line, and the isotonic estimate is given by
the solid black line.
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should lead to the same solution since the added constant,
∫ ∞

0 Ñn(y)2 dy, does not
depend on N . However, Ñn is not square integrable, and so this added constant is
infinite, making this problem ill defined. Therefore, we stick to minimizing (14).

To solve the minimization problem (continuous isotonic regression), we use
Lemma 2 from Anevski and Soulier (2011) [see also Groeneboom and Jongbloed
(2010)], where a characterization is given for the solution of our minimization
problem. We begin by integrating the empirical estimator in (11) with respect to t ,
yielding

Un(t) =
∫ t

u=0
Ñn(u) du

(15)

=
∫ t

u=0

1

n

n∑
i=1

(
Zi − q(Hi;u)

)−1/21[Zi>q(Hi;u)] du.

Then, define U∗
n to be the least concave majorant of Un, enforcing monotonicity of

its derivative. Finally, for t ≥ 0, N̂n(t) = U∗,r
n (t) is the right-hand derivative of U∗

n

evaluated at t .
Sections 4 and 5 will consider the rates of convergence and asymptotic distribu-

tions for the plug-in estimators and the isotonic estimator in turn.

4. Asymptotic distributions of the plug-in estimators. There are a few as-
sumptions on the observed variables that are required for the derivation of consis-
tency and the various asymptotic distributions to hold.

ASSUMPTION 1. 0 < Eg[Z−1/2] < ∞. Equivalently, via (1) and (8), 0 <

Ef [√X] < ∞.

ASSUMPTION 2. Eg[H 5+ε] < ∞ for some ε > 0.

ASSUMPTION 3. Eg[Z−1/2H ] < ∞.

Under Assumptions 1, 2 and 3, the plug-in estimators for the distribution func-
tion of H , the quantities N(t) for X, R, S and V (for fixed t), and the covariance in
equations (10), (11) and (13), respectively, are consistent by the law of large num-
bers. From (1), (2) and (8) it follows that the random variables Z−1/2, HZ−1/2 and
[Z − q(H ; t)]−1/21[Z>q(H ;t)] have infinite variances. This means that the standard
(finite variance) central limit theorem cannot be used to derive relevant asymptotic
distributions. The theorem below states a central limit result for random variables
with infinite variances that will be needed in the sequel.

THEOREM 1. Let Yi , for i = 1,2, . . . , be i.i.d. random variables. Denote the
distribution of Yi by K and define Yn = 1

n

∑n
i=1 Yi . If EK [Yi] < ∞ and PK(Yi >
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c) ∼ κ
c2 as c → ∞ and EK [Y 2

i 1[Yi∈[0,c)]] ∼ κ ln(c2), where κ > 0 is a constant,
then √

n

ln(n)

(
Yn − EK [Yi])�N (0, κ).

PROOF. We apply Theorem 4 from Chapter 9 of Chow and Teicher (1988). To
this end, note that because PK(Yi > c) ∼ κ

c2 and EK [Y 2
i 1[Yi∈[0,c)]] ∼ κ ln(c2), the

following condition holds:

lim
c→∞

∫
|y|>c dK(y)

(1/c2)
∫
|y|<c y2 dK(y)

= lim
c→∞

P(Yi > c)

(1/c2)EK [Y 2
i 1[Yi∈[0,c)]]

= lim
c→∞

κ

κ ln(c2)
= 0.

Now, choose c = √
n ln(n)κ and define An = n

Bn

∫
|y|<Bn

y dK(y) and Bn =
sup{c : 1

c2

∫
|y|<c y2 dK(y) ≥ 1

n
}. This leads to Bn ∼ c and An ∼

√
n

ln(n)κ
EK [Yi] for

n → ∞ since EK [Yi] < ∞. Consequently, the central limit theorem holds where,
for y ∈ R,

lim
n→∞P

(
1

Bn

n∑
i=1

Yi − An < y

)
= lim

n→∞P

(√
n

ln(n)κ

(
Yn − EK [Yi]) < y

)
= 
(y),

where 
 is the CDF of the standard normal distribution. �

4.1. Asymptotic distributions for the estimators of N(t) and F(t). Using The-
orem 1, we derive the asymptotic distribution for estimators of N(t) for the various
choices of q given in (4). We begin by defining the density function of the random
variable Z − q(H ; t) as

τq(z) = τq(·;t)(z) =
∫ ∞
h=0

g
(
z + q(h; t), h)dh.(16)

ASSUMPTION 4. τ ′
q is continuous and uniformly bounded by some M < ∞

in a right neighborhood of 0.

If Assumption 4 holds, then (16) has the important property that for δ ↓ 0,∫ δ

z=0
τq(z) dz = δτq(0) + o(δ).(17)

THEOREM 2. Let (Zi,Hi) (i = 1,2 . . .) be an i.i.d. sequence with density g

given in (1), t ≥ 0 fixed, and let q be any of the choices given by (4). Further-
more, let Ñn be defined as in (11) and let Assumption 1 hold and Assumption 4 be
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satisfied for q(·; t) and g. Then√
n

ln(n)

(
Ñn(t) − N(t)

)
�N

(
0, τq(0)

)
.(18)

PROOF. Define the i.i.d. sequence Y1, Y2, . . . by Yi = [Zi − q(Hi; t)]−1/2 ×
1[Zi>q(Hi;t)] for i = 1,2, . . . with distribution function KY . Note that Ñn(t) =
n−1 ∑n

i=1 Yi and E[Yi] = N(t) < ∞ by Assumption 1 and (7). The tail proba-
bilities of Yi behave like

P(Yi > y) = P

(
1[Zi>q(Hi;t)]√
Zi − q(Hi; t) > y

)

= P

(
q(Hi; t) < Zi <

1

y2 + q(Hi; t)
)

=
∫ ∞
h=0

∫ 1/y2+q(h;t)
z=q(h;t)

g(z, h) dz dh

=
∫ ∞
h=0

∫ 1/y2

z=0
g
(
z + q(h; t), h)dzdh

=
∫ 1/y2

z=0

∫ ∞
h=0

g
(
z + q(h; t), h)dzdh

=
∫ 1/y2

z=0
τq(z) dz = 1

y2 τq(0) + o
(
y−2).

Applying (17) as y → ∞, we see that κ = τq(0) in Theorem 1. The expectation of
Y 2

i truncated at c = √
n ln(n)κ is

E
[
Y 2

i 1Yi∈[0,c)

] =
∫ c

y=0
y2 dKY (y)

(19)
=

∫ c

y=0
2y

(
KY (c) − KY (y)

)
dy ∼ ln

(
c2)τq(0).

This relationship is proven in the supplemental article [McGarrity, Sietsma and
Jongbloed (2014)]. Therefore, from Theorem 1 the result follows. �

By Theorem 2, the asymptotic variances for the estimators Ñn(t) based on the
quantities q for the squared radius, aspect ratio, surface area and volume, respec-
tively, are given by∫ ∞

h=0
g(t, h) dh = gZ(t),

∫ ∞
h=0

g
(
h2t2, h

)
dh,

(20) ∫ ∞
h=0

g

([√
h2

4
+ t

2π
− h

2

]2

, h

)
dh and

∫ ∞
h=0

g

(
t

πh
,h

)
dh.
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Note that for the squared radius, result (20) is not new. Since it is independent
of height, this result is the same as the result stated in Theorem 2 by Groeneboom
and Jongbloed (1995) for spherical particles in Wicksell’s problem. However, for
the other quantities of interest, which require both the squared radius and the
height of the cylinders, the result is different from what can be obtained by follow-
ing Groeneboom and Jongbloed’s approach to the Wicksell problem. The asymp-
totic distributions of Ñn(t) can be used to obtain the asymptotic distributions of
the corresponding distribution functions of interest, evaluated at t . Note that for
all choices of q in (4), Ñn(0) = 1

n

∑n
i=1 Z

−1/2
i and N(0) = Eg[Z−1/2] = m−

G =
π/(2m+

F ).

COROLLARY 1. Based on the estimators Ñn(t) of Theorem 2, define F̃n(t) =
1 − Ñn(t)/Ñn(0) as estimator for FT defined in (5). Then, under the conditions of
Theorem 2, we have for n → ∞√

n

ln(n)

(
F̃n(t) − F(t)

)
�N

(
0,

N(0)2τq(0) + N(t)2gZ(0)

N(0)4

)
.(21)

The proof follows from Theorem 2 using Slutsky’s lemma.

4.2. Asymptotic distribution for the estimator of the covariance. Finding the
asymptotic distribution of the covariance estimator is more complicated than for
any single expectation estimator. Therefore, this asymptotic distribution is consid-
ered first and the results are then applied to the simpler estimators for the various
expectations. From Assumption 2 the variance of H is finite. Therefore, the stan-
dard central limit theorem for finite variance random variables holds for the sample
mean of the Hi ’s and we can define an approximating quantity for the covariance
that depends only on the terms involving Z−1/2 [compared to (13)]:

σ̃
n,

√
XH

= (π/2)Eg[Hi]
n−1 ∑n

i=1 Z
−1/2
i

− π/2

n−1 ∑n
i=1 Z

−1/2
i

∑n
i=1 HiZ

−1/2
i∑n

i=1 Z
−1/2
i

.

Note that δ−1
n (σ̂

n,
√

XH
− σ̃

n,
√

XH
)

P→ 0, where δn =
√

ln(n)
n

. Hence, to derive the

asymptotic distribution of δ−1
n (σ̂

n,
√

XH
−σ

n,
√

XH
), it suffices to derive the asymp-

totic distribution of δ−1
n (σ̃

n,
√

XH
− σ

n,
√

XH
). Considering this distribution, define

the function φ : (0,∞)2 �→R as

φ(u, v) = π

2

(
Eg[H ]

u
− v

u2

)
.

Moreover, define

Tn = 1

n

n∑
i=1

(
Z

−1/2
i

HiZ
−1/2
i

)
,(22)
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leading to σ̃
n,

√
XH

= φ(Tn). In order to pin down the asymptotic variance of
σ̃

n,
√

XH
, we need two more assumptions and the following lemma.

ASSUMPTION 5. ξ
j
g = ∫ ∞

h=0 hjg(0, h) dh < ∞ for j = 0,1,2.

ASSUMPTION 6. For some constant K < ∞, | ∂
∂z

g(z,h)| ≤ K for all z,h ≥ 0.

LEMMA 1. Let Tn be as defined in (22). Assume that Assumptions 1, 2, 3, 5
and 6 hold, then

δ−1
n

(
Tn − Eg[Tn])�N (0,�) where � =

(
ξ0
g ξ1

g

ξ1
g ξ2

g

)
(23)

and the entries in � can be formulated from (8) to yield

ξj
g =

∫ ∞
h=0

hjg(0, h) dh = Ef [X−1/2Hj ]
2Ef [X1/2] .(24)

The proof of this lemma can be found in the supplemental article [McGarrity, Si-
etsma and Jongbloed (2014)]. We now apply the �-method to the quantity φ(Tn),
which yields

δ−1
n (σ̃

n,
√

XH
− σ√

XH
) = δ−1

n

(
φ(Tn) − φ

(
Eg[Tn]))�N

(
0, ν2),

where

ν2 = (∇φ
(
Eg[Tn]))T �

(∇φ
(
Eg[Tn]))

and

∇φ(u, v) =

⎛⎜⎜⎝
∂

∂u
φ(u, v)

∂

∂v
φ(u, v)

⎞⎟⎟⎠ = π

2

1

u3

(
2v − Eg[H ]u

−u

)
.

This provides ν2 in terms of the joint densities of the observable variables:

ν2 =
(

π

2

)2

E−4
g

[
Z−1/2]

×
{
ξ0
g

(
4
E2

g[Z−1/2H ]
E2

g[Z−1/2] − 4
Eg[Z−1/2H ]Eg[H ]

Eg[Z−1/2] + E2
g[H ]

)
(25)

+ 2ξ1
g

(
Eg[H ] − Eg[Z−1/2H ]

Eg[Z−1/2]
)

+ ξ2
g

}
.
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Given the cross-moment relationships in (8) and (24), ν2 can also be expressed in
terms of the underlying joint distribution of the cylinder radii and heights:

ν2 =
(

π

2

)−2

Ef

[
X1/2]

× {
Ef

[
X−1/2](4E2

f

[
X1/2]E2

f [H ]
− 4Ef [H ]Ef

[
X1/2H

]
Ef

[
X1/2] + E2

f

[
X1/2H

])
(26)

+ 2Ef

[
X−1/2H

](
Ef

[
X1/2H

]
Ef

[
X1/2] − Ef [H ]E2

f

[
X1/2])

+ Ef

[
X−1/2H 2]E2

f

[
X1/2]}.

This proves the following theorem for the plug-in estimator for σ√
XH

.

THEOREM 3. Let σ√
XH

and σ̂
n,

√
XH

be defined as in (9) and (13), respec-

tively. Under the assumptions of Lemma 1, for ν2 defined in (25) and (26),√
n

lnn
(σ̂

n,
√

XH
− σ√

XH
)�N

(
0, ν2) as n → ∞.

4.3. Estimating the expectations. From (8) and (12), it is simple to verify that
the various 3D quantities of interest are given by the 2D observable quantities with
their empirical estimators given in Table 1.

Due to the dependence of the aspect ratio on H−1, several more assumptions
are required to continue this analysis. For brevity and simplicity, the expectation
of the aspect ratio will not be considered any further.

TABLE 1
Expectations and empirical estimates of the 3D quantities of interest given as functions of the

expectations and empirical estimates of the 2D observable quantities

Quantity of interest (T ) Expectation Ef [T ] Empirical estimator Êf [T ]

Radius: X1/2 (π/2)(Eg[Z−1/2])−1 (π/2)((1/n)
∑n

i=1 Z
−1/2
i )−1

Squared radius: X (2Eg[Z1/2])(Eg[Z−1/2])−1 (2
∑n

i=1 Z
1/2
i )(

∑n
i=1 Z

−1/2
i )−1

Height: H (Eg[Z−1/2H ])(Eg[Z−1/2])−1 (
∑n

i=1 Z
−1/2
i Hi)(

∑n
i=1 Z

−1/2
i )−1

Volume: πXH (2πEg[Z1/2H ])(Eg[Z−1/2])−1 (2
∑n

i=1 Z
1/2
i Hi)(

∑n
i=1 Z

−1/2
i )−1

Surface area: 2π [(2Eg[Z1/2])(Eg[Z−1/2])−1 2π [(2∑n
i=1 Z

1/2
i Hi)(

∑n
i=1 Z

−1/2
i )−1

2π(X + X1/2H) + (π/2)Eg[H ] + (π/2)(
∑n

i=1 Hi)

× (2Eg[Z−1/2])−1] × (
∑n

i=1 Z
−1/2
i )−1]

Aspect ratio: (πEg[H−1])(Eg[Z−1/2])−1 π(
∑n

i=1 H−1
i )(

∑n
i=1 Z

−1/2
i )−1

X1/2H−1
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TABLE 2
Asymptotic variances ν2

g from Corollary 2

Quantity of interest Asymptotic variance ν2
g

Radius (π/2)2ξ0
g (Eg[Z−1/2])−4

Squared radius 4ξ0
g (Eg[Z1/2])2(Eg[Z−1/2])−4

Height {ξ0
g (Eg[Z−1/2H ])2 − 2ξ1

gEg[Z−1/2H ]Eg[Z−1/2]
+ ξ2

g (Eg[Z−1/2])2}(Eg[Z−1/2])−4

Volume 4π2ξ0
g (Eg[Z1/2H ])2(Eg[Z−1/2])−4

Surface area ξ0
g (4πEg[Z1/2] + π2Eg[H ])2(Eg[Z−1/2])−4

To obtain the asymptotic distributions, Lemma 1 and the delta method can be
used with the following assumption.

ASSUMPTION 7. Eg[Z1/2Hj ] < ∞ and Eg[(Z1/2Hj)2] < ∞, where j =
0,1.

Under Assumption 7, the expectations can be treated as constants in the mod-
ified function φ, as discussed for the expectation of the height in the previous
section. The coefficients s and t for linearizing (22) are taken to be zero where
appropriate. Then, the asymptotic variance for the estimation of the quantities of
interest given above is listed in Table 2.

This leads to the following corollary to Theorem 3.

COROLLARY 2. Let Ef [T ] and Êf [T ] be defined as in Table 1, where T

is any of the quantities of interest listed in Table 1. Under the assumptions of
Lemma 1 and Assumption 7, for ν2

g as defined in Table 2,√
n

ln(n)

(
Êf [T ] − Ef [T ])�N

(
0, ν2

g

)
as n → ∞.

Theorem 3 and Corollary 2 show that the expectations of the quantities of in-
terest can be estimated consistently with a rate of

√
ln(n)/n. These results can be

used to obtain the 95% confidence intervals for the unknown expectations being
estimated by Êf [T ]:

Êf [T ] ± 1.96νg

√
ln(n)

n
.(27)

For a discussion on the small sample properties and coverage probability of the
confidence intervals, see Chapter 4 of McGarrity (2013) and the supplemental ar-
ticle [McGarrity, Sietsma and Jongbloed (2014)].
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4.4. Asymptotic distribution for the estimator of the height distribution. Con-
sider the plug-in estimator for the distribution function of heights, given in (10).
As mentioned before, under Assumption 2, the law of large numbers immediately

gives that F̂H,n(h)
P→ FH(h) as n → ∞. The asymptotic distribution is given in

the theorem below.

THEOREM 4. Consider FH(h) and F̂H,n(h) as given in (3) and (10), respec-
tively. Under Assumptions 1 and 5,√

n

lnn

(
F̂H,n(h) − FH(h)

)
�N

(
0, ν2),

where ν2 = (m−
G)−2(FH (h)

∫ ∞
h g(0, y) dy + (1 − FH(h))

∫ h
0 g(0, y) dy).

PROOF. Consider the random vectors

Tn = 1

n

n∑
i=1

(
Z

−1/2
i

Z
−1/2
i 1[Hi<h]

)

with

E[Tn] =
⎛⎝ m−

G∫ ∞
z=0

∫ h

y=0
z−1/2g(z, y) dy dz

⎞⎠ .

For Tn it is shown in the supplemental article [McGarrity, Sietsma and Jongbloed
(2014)] that √

n

lnn

(
Tn − E[Tn])�N (0,�),(28)

where the entries of � are given by ξ12 = ξ21 = ξ22 = ∫ h
y=0 g(0, y) dy and ξ11 =

gZ(0). The result follows by applying the �-method to the function φ(u, v) = v/u

at Tn, yielding asymptotic normality with variance ν2. �

The estimator for the distribution of the heights given in (10) accounts for any
dependence between the radius and height of the cylinders. Any correlation that
might exist will lead to the height observations being biased like the rectangle half-
width observations due to the larger cylinders being more likely to be intersected
by the cut plane. However, if the heights are known to be independent from the
cylinder radius, then the biasing in the problem has no consequences for the distri-
bution of observable heights and we may simply take the empirical distribution of
the observed heights to be the estimate of the actual distribution:

F̂H (h) = 1

n

n∑
i=1

1[Hi≤h].
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FIG. 4. The upper and lower figures show the estimate of FH (h) for n = 500 and n = 5000 cylin-
ders, respectively. The dark grey lines show the 3D empirical distributions of the cylinder heights.
The light grey lines show the 2D empirical distributions. The black lines show the estimates of the
3D distributions as calculated from (10). The left images are of cylinders whose height and radii are
uncorrelated and the underlying distribution of the height is shown by the grey dot-dashed line. The
right images are of cylinders whose height and radii are correlated.

This estimator has a rate of convergence of 1/
√

n. Figure 4 shows the effect of
the rate of convergence for the estimation procedure. Focusing on the left images,
the upper image shows the 2D (light grey line) and 3D (dark grey line) empiri-
cal distributions for the heights of 500 uncorrelated (radii and cylinder heights),
uniformly distributed cylinders. The bottom image shows the same for 5000 cylin-
ders. The black solid line shows the estimation of the 3D distribution as calculated
from (10). The empirical distribution is a better choice than (10) in this case be-
cause it has the faster rate of convergence. Contrarily, focusing on the right images
where there is a nonzero correlation between the radii and heights of the cylinders,
the biasing in the 2D distribution (light grey lines compared to the dark grey line
for the 3D empirical distribution) is clear. In this case, the estimator from (10) is
necessary to accurately estimate the underlying 3D distribution.
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5. Asymptotic distributions of the isotonic estimators. In this section we
study the consistency and asymptotic behavior of the isotonic estimators, N̂n, as
described in Section 3. To do so requires one further assumption.

ASSUMPTION 8.
∫ ∞

0 N(t) dt < ∞.

THEOREM 5. Suppose t ≥ 0 and FT from (5) has a density f that is strictly
positive and continuous in a neighborhood of t (a right neighborhood if t = 0) and
that q(h; t) is defined as in (4). Further, suppose that Assumptions 1, 4 and 8 hold.
Then, √

n

lnn

(
N̂n(t) − N(t)

)
�N

(
0,

1

2
τq(0)

)
(29)

as n → ∞.

The proof of this theorem can be found in the supplemental article [McGarrity,
Sietsma and Jongbloed (2014)]. The striking difference with Theorem 2 is the
factor 1/2 in the asymptotic variance. This means that enforcing monotonicity in
the estimator improves on the empirical estimator because the resulting estima-
tor satisfies the natural monotonicity constraint. Moreover, it also leads to a more
accurate estimator asymptotically.

Analogous to Corollary 1, we have the following corollary.

COROLLARY 3. Suppose that q(h; t) > 0 for all h and t > 0, and that FT (t)

has a density f which is strictly positive at t and continuous in a neighborhood
of t . Then, under the assumptions of Theorem 5,√

n

ln(n)

(
1 − N̂n(t)

N̂n(0)
− FT (t)

)
�N

(
0,

N(0)2τq(0) + N(t)2gZ(0)

2N(0)4

)
(30)

as n → ∞.

The proof of this corollary is analogous to the proof of Corollary 2 given in
Groeneboom and Jongbloed (1995), in our case applying Theorem 5 from above.
Recall that consistency at zero follows from Lemma 1 in the supplemental article
[McGarrity, Sietsma and Jongbloed (2014)].

6. Simulation. To validate the model and estimators, we implemented a sim-
ulation where we work directly with the distributions of X and H to calculate the
distributions of Z and H for the rectangles, as well as the other quantities of in-
terest. To start, X is taken to be Gamma(3) distributed and H , given X = x, is
triangularly distributed on [0, x]:

fX(x) = 1
2x2e−x, x ≥ 0,

(31)

fH |X(h|x) = 2

x2 (x − h), h ∈ (0, x).
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From the above, marginal and conditional densities of the observable quantities
can be calculated:

gZ(z) = 4
15

(
z2 + z + 3

4

)
e−z, z ≥ 0,

gH |Z(h|z) = 2(1/2 + z − h)

(z2 + z + 3/4)
1[0<h<z](32)

+ 2[(1/2 + z − h)IG(1/2, (h − z)) + √
h − ze−(h−z)]√

π(z2 + z + 3/4)
1[h>z],

where IG(m,x) = ∫ ∞
t=x tm−1e−t dt is the incomplete Gamma function. From the

joint densities, the underlying distributions for the various quantities of interest
(V , S and R) can be calculated. As an example, the distribution function for the
volume is as follows:

FV (v) = 1 −
[
1 +

√
v

π
− v

2π
+ 1

2

(
v

π

)3/2]
e−√

v/π + v2

2π2 Ei

(√
v

π

)
,(33)

where Ei(x) = ∫ ∞
u=x e−uu−1 du is the exponential integral. For this simulation, we

draw n observations from the marginal density gZ . For each observation from Z,
a corresponding height observation is drawn from the conditional density gH |Z
to form the 2D observations (Z1,H1), . . . , (Zn,Hn) for the n rectangles. From
these observations it is possible to estimate the various quantities of interest for the
cylinder, beginning with the covariance between the cylinder height and radius.

Table 3 shows the results for the estimation of the covariance of
√

X and H as
calculated from the 2D observations. The first column indicates the number of ob-
served rectangles on the cut plane. For n = ∞, the true underlying covariance and

TABLE 3
Results of the covariance estimation for the simulation. n is the number of observed rectangles on

the cut plane. σ̂
n,

√
XH

is the covariance estimate given in (13). ν̂2
g is the asymptotic variance

determined from a single simulation run based on (25) using the empirical means as estimates for
the expectations in the equation. The fourth column gives half the width of the constructed 95%

confidence interval for the covariance. The fifth column gives the empirical mean from 1000
simulation runs of the covariance estimate

Covariance estimator and the asymptotic variance

n σ̂
n,

√
XH

ν̂2
g 1.96

√
lnn
n ν̂g

1
1000

∑1000
i=1 σ̂

i,n,
√

XH

50 0.424 1.11 0.58 0.266
500 0.331 1.12 0.23 0.277

5000 0.262 1.58 0.10 0.277
50,000 0.273 1.53 0.04 0.276

∞ 0.277 1.50 − 0.277
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asymptotic variance are given. For this simulation, the underlying covariance, as
calculated from (9) and (31), is 0.277, and the true underyling asymptotic variance,
as calculated from (25) and (31), is 1.50. The second column gives the estimates
of the covariance for a single simulation run. The third column gives the estimate
of the asymptotic variance for the covariance estimator for a single simulation run.
The asymptotic variance was estimated from the empirical means for the expecta-
tions in (25) and by using the following estimator for (24):

ξ̂ j
g = 1

bnn

n∑
i=1

H
j
i 1[0,bn](Zi),(34)

where bn ∼ n−1/3 is a cutoff value for approximating z = 0 and can be shown to
have an optimal vanishing rate for the MSE of n−2/3 (see Chapter 3 of McGarrity
(2013) for details of the MSE and the supplemental article [McGarrity, Sietsma and
Jongbloed (2014)] for a discussion on the affects of the choice of bandwidth). The
fourth column gives the half-widths of the constructed 95% confidence interval for
the covariance using the estimators for the covariance.

The final column shows the empirical mean over 1000 simulation runs of the
covariance estimate using the 2D observations. The results behave as expected.
While the single simulation runs at small n give large values for the covariance es-
timate, the true covariance falls within the constructed 95% confidence interval. As
n increases, the estimated covariance approaches the true covariance. For the mean
of 1000 simulation runs, we see that the estimated value of the covariance is much
closer to the expected value, even for small n. This demonstrates the consistency
and unbiased nature of the estimator.

It is also possible to estimate the underlying distribution functions, such as that
given in (33), and compare the empirical distribution function of the quantities
of interest also based on the 2D observations (Z1,H1), . . . , (Zn,Hn) treated as
if they were distributed as the (X,H). This means, for example, that for (33),
Vi = πZiHi . This is done because often only 2D data is accessible and has often
been justified as a reasonable approximation for the 3D data. In the case of the
squared radius, including the 2D data in this way emphasizes the bias inherent in
the observations. For the volume, surface area and aspect ratio, the bias still exists.
The question is whether the proposed estimators provide a better estimate than
using the 2D data straight up, and, compared to the confidence intervals, it would
seem that indeed it is.

Applying both the empirical and isotonic estimation procedures to the gener-
ated data sets leads to the results for the estimation of the aspect ratio (left), the
surface area (middle) and the volume (right) displayed in Figure 5. The underly-
ing distribution is given by the dashed dark grey curve. The empirical distribution
based on the 2D observations [as if the (Z,H) were distributed as the (X,H)]
is given by the light grey curve. The isotonic estimate of the distribution of the
quantity of interest based on the 2D observations is given by the black curve. The



2558 K. S. MCGARRITY, J. SIETSMA AND G. JONGBLOED

FIG. 5. Plots of the cumulative distribution functions for the aspect ratio, R, surface area, S, and
volume, V , for n = 500 observations of (Z,H) drawn from the 2D distributions in (32). In all figures,
the dashed dark grey line gives the underlying distribution, the light grey line gives the empirical
distribution based on the 2D observations (Z,H), and the black line gives the isotonic estimation
of the distribution of the quantity of interest based on the 2D observations. The grey diamonds give
approximate 95% point-wise confidence sets for the isotonic estimator.

95% point-wise confidence sets for the isotonic estimator are given by the grey
diamonds.

The point-wise confidence sets are calculated from the results of Corrollary 3.
To obtain an estimate of the asymptotic variance νg given in (30), only the function
τq(0) = ∫ ∞

h=0 g(q(h; t), h) dh needs yet to be estimated. The estimates for N(0)

and N(t) can be obtained from the isotonic estimates described in Section 3. The
function gZ(0) = ξ0

g and can be estimated by (34). Following the same idea as this
estimator, and without going into the asymptotic behavior, we can estimate τq(0)

consistently as

τ̂q(0) = 1

2bnn

n∑
i=1

1[−bn,bn]
(
Zi − q(Hi; t)).

The underlying distribution is mostly within the 95% point-wise confidence sets
indicating that the estimator is reasonable and can be used in practice.
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FIG. 6. Figure (a) shows a view of the 3D reconstruction of the banded microstructure from the se-
rial sectioned images. Figure (b) shows the bounding boxes around the features of interest (heretofore
referred to as rectangles and cylinders for the 2D and 3D objects, resp.) in the microstructure.

7. Application of the model to real microstructures. The model and esti-
mation procedures are now applied to the banded steel microstructure shown in
Figure 1. To obtain 3D information about the microstructure, the material was se-
rial sectioned, providing images approximately every 2 µm into a depth of about
90 µm. For details on the experimental procedure see McGarrity, Sietsma and
Jongbloed (2012b). The optical images were processed with dilation and closing
image operations on binary thresholds. The serial sectioned images were com-
bined to form a single 3D object, shown in Figure 6(a), and the bounding boxes,
that is the smallest box that contains all voxels of the object being considered,
around the 3D features of interest (heretofore referred to as cylinders) were found
using the 3D analysis function in Fiji [Bolte and Cordelières (2006)]. From Fig-
ure 6(a) it is clear that the 3D data is incomplete. The sectioning depth was not
sufficient to observe a cylinder in its entirety. This gives a clear indication of why
using this model to estimate the distributions of the quantities of interest is so im-
portant. Using even one of the section images, like the one shown in Figure 6(b),
can provide a reasonable estimate for the underlying 3D distribution that is costly
to obtain directly. Figure 6(b) shows rectangles around the 2D features of interest.
These are the smallest rectangles to fully contain the objects of interest and are
called bounding boxes. These rectangles were found using Fiji software [Rasband
(1997–2009)] and yield the observed data pairs (Z,H) used in the estimation pro-
cedures. For a discussion on using bounding boxes to represent the rectangles and
how it affects the results of the model, see Chapter 6 of McGarrity (2013).

Table 4 gives the 2D estimates for the moments and covariance, and the half-
widths of their constructed 95% confidence intervals. The second column of the
table gives the estimates using (12) and (13) for the moments and covariance based
on a single 2D estimate for the asymptotic variances of the moments from Table 2.
For the covariance, the estimates for the asymptotic variance come from (25).

Using the 2D data set from any single slice of the serial sectioning, we can ap-
ply the model and estimation procedures to find the CDFs of the various quantities
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TABLE 4
Results for the moment and covariance estimates of the
microstructure data with 179 rectangle observations.

The first column gives the estimated quantity. The
second gives the estimate of that quantity with the

half-widths of the constructed 95% confidence intervals
using the estimates for the asymptotic variance

Moment and covariance estimates (n = 179)

Quantity 2D estimate ±1.96
√

lnn
n ν̂g

E[√X] 10.55 ± 2.30 µm
E[X] 125 ± 27 µm2

E[H ] 8.72 ± 0.56 µm
E[S] 1434 ± 332 µm2

E[V ] 4370 ± 950 µm3

σ√
XH

11.1 ± 25.6 < 0 µm2

of interest. Figure 7 shows the results of the estimation procedures. The upper left
plot shows the results for the isotonic estimation of the squared radius distribution.
The upper right plot shows the plug-in estimation results for the height distribution.
The middle plot and the lower left and right plots show the results for the isotonic
estimation of the distributions for the volume, aspect ratio and surface area, re-
spectively. In all plots, the light grey lines show the empirical estimates obtained
by treating the rectangle squared half-width and height as if they were the squared
radius and height of the cylinder. The black lines are the isotonic estimation results
for the underlying distribution functions of the quantities of interest given the 2D
observations. The grey diamonds give the asymptotic point-wise confidence sets
for the isotonic estimates of FT taken at the values of t corresponding to the 2D
observations. These bands are calculated from the results of Corollary 3 and The-
orem 4. For the asymptotic variance of the height distribution, the estimator F̂H,n

is used. An estimator for the integrals again follows the same idea as the estimator
for ξ0

g , and, without considering the asymptotic behavior, we obtain

1

bnn

n∑
i=1

1[0,bn](Zi)1[h,∞](Hi) →
∫ ∞
y=h

g(0, y) dy,

1

bnn

n∑
i=1

1[0,bn](Zi)1[0,h](Hi) →
∫ h

y=0
g(0, y) dy.

As can be seen from the plots in Figure 7, using the empirical 2D distributions
tends to overestimate the small values and underestimate the large values of the
quantities of interest. The 2D empirical distributions do not provide a reasonable
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FIG. 7. Results of the model and estimation procedures applied to the microstructure shown in
Figure 6. The number of observations is n = 179. The light grey lines are the estimates obtained
by treating the squared half-width and height of the bounding box as if it were the squared radius
and height of the cylinder. The black lines give the isotonic estimations of the underlying distribu-
tion functions of the quantities of interest given the 2D observations. The grey diamonds give the
asymptotic 95% point-wise confidence sets for the isotonic estimates.
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picture for the distribution of the 3D quantities of interest. The exception to that,
of course, is the height distribution. Due to the potential correlation between the
radius and height of the cylinders, shown by a nonzero covariance between them in
Table 4, there appears to be a small bias in the 2D observations, leading to a slight
underrepresentation of the larger height values, yet it is still encompassed within
the point-wise confidence sets. The results of the estimates for the covariance of the
cylinder radius and height, the estimates for the various moments and the isotonic
estimates for the CDFs of the 3D quantities of interest provide a glimpse into the
microstructure that cannot be reliably obtained from the serial sectioned data.

8. Discussion. Often, it is difficult to know about the full 3D nature of the
material or object being studied. The methods available to obtain 3D data about a
material tend to be expensive in terms of resources and time, destructive and lim-
ited to small length scales. For instance, the total attained depth from several weeks
of serial sectioning was about 90 µm for the microstructures shown in this work,
while many of the cylinders are seen to be significantly larger than that. The serial
sectioning is not enough to view a cylinder in its entirety through the depth of the
sectioning. Therefore, in industry in particular, most information about a material
is based upon 2D observations, which in many cases is insufficient. Stereology was
developed to address this issue and to find ways to extract information about the
3D nature from the 2D observations. However, in order to be able to do this, certain
assumptions must be made about the objects being studied. In the case of the Ori-
ented Cylinder Model introduced in this work, the assumptions are that the objects
in the material can be represented by circular cylinders whose axes of symmetry
are all oriented in the same direction and that the cut through the material is along
that axis. It is also assumed that the cylinders are uniformly distributed throughout
the material. While this model is simple and the assumptions are somewhat ideal,
our observations suggest that this is a reasonable starting point upon which more
complex models can be built. The Oriented Cylinder Model provides insight into
the material that has, until now, been lacking.

Assuming the model assumptions are reasonable, estimators are used to obtain
estimates of the unknown underlying distributions of various quantities of interest.
Since so little is known about the material studied in this work, nonparametric
estimators were chosen rather than parametric ones since not enough is known
about the material to assume a specific distribution. While parametric estimators
will have a better rate of convergence and smaller variance, the difference is of
order

√
ln(n). The flexibility afforded by the nonparametric model makes up for

this difference.
The results presented especially for the microstructure data in Section 7 are in-

formative, given how little information is available for the 3D nature of the mate-
rial. However, there are several considerations, particularly inherent to processing
the images, that have not been considered in this particular work. Edge effects are
not accounted for in this analysis. The cylinders are considered to be completely
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inbounds of the observation window. However, it is possible that cylinders ending
at the edge of the image continue beyond and this is not accounted for in this anal-
ysis. While edge effects can be eliminated from the simulation results presented
in Section 6, they cannot reasonably be ignored for the microstructure. Features
of interest like microstructural bands often deviate from perfect cylinders and are
not observable as perfect rectangles. This leads to challenges in defining the di-
mensions of the observed rectangle. In this work, the bounding box around the
feature of interest was taken as the rectangle. However, using the bounding box
leads to overestimation of the heights and squared radii, though the significance
of this overestimation is not immediately known. Determining an object of inter-
est in an image is often done through pixel connectivity. Even though the images
have undergone morphological processing, as described in McGarrity, Sietsma and
Jongbloed (2012a), it is not always possible to preserve the true connectivity of the
objects. How this affects the outcome of the estimation under the model assump-
tions is also not immediately clear. These issues are important to consider, but are
beyond the scope of this particular work.

Despite these issues, and the simplicity of the model, the estimated distribu-
tions for the 3D quantities of interest are practicable representations of the under-
lying distributions. As a first step toward understanding and modeling a full 3D
microstructure, this work provides a solid starting point and a reasonable approxi-
mation to what is often not directly observable.

APPENDIX: RELATIONSHIPS FOR THE QUANTITIES OF INTEREST

First, define the quantity of interest, squared radius, aspect ratio, surface area
or volume, as t . Let (u,h) be the observed pair of variables. For a fixed h > 0 we
can define t = p(h;u) for each quantity of interest. In (4) the inverse of p(h;u) is
defined as u = q(h; t). These can each be calculated as follows:

p(h;u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u (squared radius) t√
u

h
(aspect ratio) (ht)2

2π(u + h
√

u) (surface area)
[√

h2

4
+ t

2π
− h

2

]2

πhu (volume)
t

πh

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭(35)

= q(h; t).
It is important to note for all choices of p(h;u) and q(h; t) that p(h;q(h; t)) = t

and q(h;p(h;u)) = u.
The derivative of these functions with respect to the second argument is also

important. Denoting this partial derivative of p with respect to u by ṗ and the
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partial derivative of q with respect to t by q̇ results in

ṗ(h;u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (squared radius) 1
1

2h
√

u
(aspect ratio) 2h2t

2π

(
1 + h

2
√

u

)
(surface area)

1

2π

(
1 − h

2
√

h2/4 + t/2π

)

πh (volume)
1

πh

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= q̇(h; t).

Considering the relationship between ṗ and q̇ and using the linear approximation
of q near t yields

ṗ
(
h;q(h; t)) = lim

ε↓0

p(h;q(h; t + ε/q̇(h; t))) − p(h;q(h; t))
ε

= lim
ε↓0

t + ε/q̇(h; t) − t

ε

= 1

q̇(h; t) .

Finally, note that y > q(h; t) if and only if t < p(h;y). Recall the expression
for Wn can be written in terms of the function φn,v . We can use the substitution
u = q(h;y) in the definition of φn,v and obtain, for z and h fixed,

φn,v(z, h) =
∫ (t+δnv)∧p(h;z)
y=t

[
z − q(h;y)

]−1/2
dy

(36)

=
∫ q(h;t+δnv)∧z

u=q(h;t)
(z − u)−1/2ṗ(h;u)du.
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric inference in a stereological model with ori-
ented cylinders applied to dual phase steel” (DOI: 10.1214/14-AOAS787SUPP;
.pdf). Proofs for equation (19), Lemma 1, relation (28) and Theorem 5, discussion
of coverage probabilities for equation (27), and discussion of equation (34).

http://dx.doi.org/10.1214/14-AOAS787SUPP
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