Open Access
August 2017 Maximally persistent cycles in random geometric complexes
Omer Bobrowski, Matthew Kahle, Primoz Skraba
Ann. Appl. Probab. 27(4): 2032-2060 (August 2017). DOI: 10.1214/16-AAP1232
Abstract

We initiate the study of persistent homology of random geometric simplicial complexes. Our main interest is in maximally persistent cycles of degree-$k$ in persistent homology, for a either the Čech or the Vietoris–Rips filtration built on a uniform Poisson process of intensity $n$ in the unit cube $[0,1]^{d}$. This is a natural way of measuring the largest “$k$-dimensional hole” in a random point set. This problem is in the intersection of geometric probability and algebraic topology, and is naturally motivated by a probabilistic view of topological inference.

We show that for all $d\ge2$ and $1\le k\le d-1$ the maximally persistent cycle has (multiplicative) persistence of order

\[\Theta ((\frac{\log n}{\log\log n})^{1/k}),\] with high probability, characterizing its rate of growth as $n\to\infty$. The implied constants depend on $k$, $d$ and on whether we consider the Vietoris–Rips or Čech filtration.

References

1.

[1] Adler, R. J., Bobrowski, O. and Weinberger, S. (2014). Crackle: The homology of noise. Discrete Comput. Geom. 52 680–704. MR3279544 10.1007/s00454-014-9621-6[1] Adler, R. J., Bobrowski, O. and Weinberger, S. (2014). Crackle: The homology of noise. Discrete Comput. Geom. 52 680–704. MR3279544 10.1007/s00454-014-9621-6

2.

[2] Appel, M. J. B. and Russo, R. P. (2002). The connectivity of a graph on uniform points on $[0,1]^{d}$. Statist. Probab. Lett. 60 351–357.[2] Appel, M. J. B. and Russo, R. P. (2002). The connectivity of a graph on uniform points on $[0,1]^{d}$. Statist. Probab. Lett. 60 351–357.

3.

[3] Aronshtam, L. and Linial, N. (2015). When does the top homology of a random simplicial complex vanish? Random Structures Algorithms 46 26–35. MR3291292 10.1002/rsa.20495[3] Aronshtam, L. and Linial, N. (2015). When does the top homology of a random simplicial complex vanish? Random Structures Algorithms 46 26–35. MR3291292 10.1002/rsa.20495

4.

[4] Balogh, J., González-Aguilar, H. and Salazar, G. (2013). Large convex holes in random point sets. Comput. Geom. 46 725–733.[4] Balogh, J., González-Aguilar, H. and Salazar, G. (2013). Large convex holes in random point sets. Comput. Geom. 46 725–733.

5.

[5] Bauer, U., Kerber, M. and Reininghaus, J. (2014). PHAT (Persistent Homology Algorithm Toolbox). Online; accessed, 7-May-2015.[5] Bauer, U., Kerber, M. and Reininghaus, J. (2014). PHAT (Persistent Homology Algorithm Toolbox). Online; accessed, 7-May-2015.

6.

[6] Bobrowski, O. and Adler, R. J. (2014). Distance functions, critical points, and the topology of random čech complexes. Homology, Homotopy Appl. 16 311–344.[6] Bobrowski, O. and Adler, R. J. (2014). Distance functions, critical points, and the topology of random čech complexes. Homology, Homotopy Appl. 16 311–344.

7.

[7] Bobrowski, O. and Borman, M. S. (2012). Euler integration of Gaussian random fields and persistent homology. J. Topol. Anal. 4 49–70.[7] Bobrowski, O. and Borman, M. S. (2012). Euler integration of Gaussian random fields and persistent homology. J. Topol. Anal. 4 49–70.

8.

[8] Bobrowski, O. and Kahle, M. (2016). Topology of random geometric complexes: A survey. Topology in Statistical Inference, the Proceedings of Symposia in Applied Mathematics. To appear.[8] Bobrowski, O. and Kahle, M. (2016). Topology of random geometric complexes: A survey. Topology in Statistical Inference, the Proceedings of Symposia in Applied Mathematics. To appear.

9.

[9] Bobrowski, O. and Mukherjee, S. (2015). The topology of probability distributions on manifolds. Probab. Theory Related Fields 161 651–686.[9] Bobrowski, O. and Mukherjee, S. (2015). The topology of probability distributions on manifolds. Probab. Theory Related Fields 161 651–686.

10.

[10] Bobrowski, O., Mukherjee, S. and Taylor, J. E. (2017). Topological consistency via kernel estimation. Bernoulli 23 288–328.[10] Bobrowski, O., Mukherjee, S. and Taylor, J. E. (2017). Topological consistency via kernel estimation. Bernoulli 23 288–328.

11.

[11] Bobrowski, O. and Weinberger, S. (2015). On the vanishing of homology in random Čech complexes. Preprint. Available at  arXiv:1507.069451507.06945 MR3668845 10.1002/rsa.20697[11] Bobrowski, O. and Weinberger, S. (2015). On the vanishing of homology in random Čech complexes. Preprint. Available at  arXiv:1507.069451507.06945 MR3668845 10.1002/rsa.20697

12.

[12] Bollobás, B. and Riordan, O. M. (2003). Mathematical results on scale-free random graphs. In Handbook of Graphs and Networks 1–34. Wiley, Weinheim.[12] Bollobás, B. and Riordan, O. M. (2003). Mathematical results on scale-free random graphs. In Handbook of Graphs and Networks 1–34. Wiley, Weinheim.

13.

[13] Borsuk, K. (1948). On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35 217–234.[13] Borsuk, K. (1948). On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35 217–234.

14.

[14] Bubenik, P. and Kim, P. T. (2007). A statistical approach to persistent homology. Homology, Homotopy Appl. 9 337–362.[14] Bubenik, P. and Kim, P. T. (2007). A statistical approach to persistent homology. Homology, Homotopy Appl. 9 337–362.

15.

[15] Buchet, M., Chazal, F., Oudot, S. Y. and Sheehy, D. R. (2015). Efficient and robust persistent homology for measures. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms 168–180. SIAM, Philadelphia, PA.[15] Buchet, M., Chazal, F., Oudot, S. Y. and Sheehy, D. R. (2015). Efficient and robust persistent homology for measures. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms 168–180. SIAM, Philadelphia, PA.

16.

[16] Carlsson, G. (2009). Topology and data. Bull. Amer. Math. Soc. (N.S.) 46 255–308.[16] Carlsson, G. (2009). Topology and data. Bull. Amer. Math. Soc. (N.S.) 46 255–308.

17.

[17] Carlsson, G., Ishkhanov, T., De Silva, V. and Zomorodian, A. (2008). On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76 1–12.[17] Carlsson, G., Ishkhanov, T., De Silva, V. and Zomorodian, A. (2008). On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76 1–12.

18.

[18] Chazal, F., de Silva, V. and Oudot, S. (2014). Persistence stability for geometric complexes. Geom. Dedicata 173 193–214.[18] Chazal, F., de Silva, V. and Oudot, S. (2014). Persistence stability for geometric complexes. Geom. Dedicata 173 193–214.

19.

[19] Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A. and Wasserman, L. (2014). Stochastic convergence of persistence landscapes and silhouettes. In Computational Geometry (SoCG’14) 474–483. ACM, New York.[19] Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A. and Wasserman, L. (2014). Stochastic convergence of persistence landscapes and silhouettes. In Computational Geometry (SoCG’14) 474–483. ACM, New York.

20.

[20] Chazal, F., Glisse, M., Labruère, C. and Michel, B. (2015). Convergence rates for persistence diagram estimation in topological data analysis. J. Mach. Learn. Res. 16 3603–3635.[20] Chazal, F., Glisse, M., Labruère, C. and Michel, B. (2015). Convergence rates for persistence diagram estimation in topological data analysis. J. Mach. Learn. Res. 16 3603–3635.

21.

[21] Chazal, F., Guibas, L. J., Oudot, S. Y. and Skraba, P. (2011). Scalar field analysis over point cloud data. Discrete Comput. Geom. 46 743–775.[21] Chazal, F., Guibas, L. J., Oudot, S. Y. and Skraba, P. (2011). Scalar field analysis over point cloud data. Discrete Comput. Geom. 46 743–775.

22.

[22] Chazal, F., Guibas, L. J., Oudot, S. Y. and Skraba, P. (2013). Persistence-based clustering in Riemannian manifolds. J. ACM 60 Art. 41, 38. MR3144911[22] Chazal, F., Guibas, L. J., Oudot, S. Y. and Skraba, P. (2013). Persistence-based clustering in Riemannian manifolds. J. ACM 60 Art. 41, 38. MR3144911

23.

[23] Chazal, F., Terese Fasy, B., Lecci, F., Rinaldo, A., Singh, A. and Wasserman, L. (2013). On the bootstrap for persistence diagrams and landscapes. Preprint. Available at  arXiv:1311.03761311.0376[23] Chazal, F., Terese Fasy, B., Lecci, F., Rinaldo, A., Singh, A. and Wasserman, L. (2013). On the bootstrap for persistence diagrams and landscapes. Preprint. Available at  arXiv:1311.03761311.0376

24.

[24] Clarkson, K. L. (2006). Nearest-neighbor searching and metric space dimensions. Nearest-neighbor Methods for Learning and Vision: Theory and Practice 15–59.[24] Clarkson, K. L. (2006). Nearest-neighbor searching and metric space dimensions. Nearest-neighbor Methods for Learning and Vision: Theory and Practice 15–59.

25.

[25] de Silva, V. and Ghrist, R. (2007). Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 7 339–358. MR2308949 10.2140/agt.2007.7.339 euclid.agt/1513796672 [25] de Silva, V. and Ghrist, R. (2007). Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 7 339–358. MR2308949 10.2140/agt.2007.7.339 euclid.agt/1513796672

26.

[26] Dey, T. K., Fan, F. and Wang, Y. (2015). Graph induced complex on point data. Comput. Geom. 48 575–588.[26] Dey, T. K., Fan, F. and Wang, Y. (2015). Graph induced complex on point data. Comput. Geom. 48 575–588.

27.

[27] Edelsbrunner, H. (1993). The union of balls and its dual shape. In Proceedings of the Ninth Annual Symposium on Computational Geometry 218–231. ACM, New York.[27] Edelsbrunner, H. (1993). The union of balls and its dual shape. In Proceedings of the Ninth Annual Symposium on Computational Geometry 218–231. ACM, New York.

28.

[28] Edelsbrunner, H. (1995). The union of balls and its dual shape. Discrete Comput. Geom. 13 415–440.[28] Edelsbrunner, H. (1995). The union of balls and its dual shape. Discrete Comput. Geom. 13 415–440.

29.

[29] Erdős, P. and Rényi, A. (1959). On random graphs. Publ. Math. Debrecen 6 290–297.[29] Erdős, P. and Rényi, A. (1959). On random graphs. Publ. Math. Debrecen 6 290–297.

30.

[30] Erdős, P. and Rényi, A. (1961). On the evolution of random graphs. Bull. Inst. Internat. Statist. 38 343–347.[30] Erdős, P. and Rényi, A. (1961). On the evolution of random graphs. Bull. Inst. Internat. Statist. 38 343–347.

31.

[31] Fasy, B. T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S. and Singh, A. (2014). Confidence sets for persistence diagrams. Ann. Statist. 42 2301–2339.[31] Fasy, B. T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S. and Singh, A. (2014). Confidence sets for persistence diagrams. Ann. Statist. 42 2301–2339.

32.

[32] Federer, H. and Fleming, W. H. (1960). Normal and integral currents. Ann. of Math. (2) 72 458–520.[32] Federer, H. and Fleming, W. H. (1960). Normal and integral currents. Ann. of Math. (2) 72 458–520.

33.

[33] Ghrist, R. (2008). Barcodes: The persistent topology of data. Bull. Amer. Math. Soc. (N.S.) 45 61–75.[33] Ghrist, R. (2008). Barcodes: The persistent topology of data. Bull. Amer. Math. Soc. (N.S.) 45 61–75.

34.

[34] Guth, L. (2006). Notes on Gromov’s systolic estimate. Geom. Dedicata 123 113–129. MR2299729 10.1007/s10711-006-9111-y[34] Guth, L. (2006). Notes on Gromov’s systolic estimate. Geom. Dedicata 123 113–129. MR2299729 10.1007/s10711-006-9111-y

35.

[35] Hatcher, A. (2002). Algebraic Topology. Cambridge Univ. Press, Cambridge, Cambridge.[35] Hatcher, A. (2002). Algebraic Topology. Cambridge Univ. Press, Cambridge, Cambridge.

36.

[36] Hudson, B., Miller, G. L., Oudot, S. Y. and Sheehy, D. R. (2009). Mesh enhanced persistent homology.[36] Hudson, B., Miller, G. L., Oudot, S. Y. and Sheehy, D. R. (2009). Mesh enhanced persistent homology.

37.

[37] Kahle, M. (2009). Topology of random clique complexes. Discrete Math. 309 1658–1671.[37] Kahle, M. (2009). Topology of random clique complexes. Discrete Math. 309 1658–1671.

38.

[38] Kahle, M. (2011). Random geometric complexes. Discrete Comput. Geom. 45 553–573.[38] Kahle, M. (2011). Random geometric complexes. Discrete Comput. Geom. 45 553–573.

39.

[39] Kahle, M. (2014). Sharp vanishing thresholds for cohomology of random flag complexes. Ann. of Math. (2) 179 1085–1107.[39] Kahle, M. (2014). Sharp vanishing thresholds for cohomology of random flag complexes. Ann. of Math. (2) 179 1085–1107.

40.

[40] Kahle, M. and Meckes, E. (2013). Limit theorems for Betti numbers of random simplicial complexes. Homology, Homotopy Appl. 15 343–374.[40] Kahle, M. and Meckes, E. (2013). Limit theorems for Betti numbers of random simplicial complexes. Homology, Homotopy Appl. 15 343–374.

41.

[41] Linial, N. and Meshulam, R. (2006). Homological connectivity of random 2-complexes. Combinatorica 26 475–487.[41] Linial, N. and Meshulam, R. (2006). Homological connectivity of random 2-complexes. Combinatorica 26 475–487.

42.

[42] Munkres, J. R. (1984). Elements of Algebraic Topology. Addison-Wesley, Menlo Park, CA.[42] Munkres, J. R. (1984). Elements of Algebraic Topology. Addison-Wesley, Menlo Park, CA.

43.

[43] Owada, T. and Adler, R. J. (2015). Limit theorems for point processes under geometric constraints (and topological crackle). Preprint. Available at  arXiv:1503.084161503.08416[43] Owada, T. and Adler, R. J. (2015). Limit theorems for point processes under geometric constraints (and topological crackle). Preprint. Available at  arXiv:1503.084161503.08416

44.

[44] Penrose, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford.[44] Penrose, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford.

45.

[45] Penrose, M. D. (1997). The longest edge of the random minimal spanning tree. Ann. Appl. Probab. 7 340–361. MR1442317 10.1214/aoap/1034625335 euclid.aoap/1034625335 [45] Penrose, M. D. (1997). The longest edge of the random minimal spanning tree. Ann. Appl. Probab. 7 340–361. MR1442317 10.1214/aoap/1034625335 euclid.aoap/1034625335

46.

[46] Phillips, J. M., Wang, B. and Zheng, Y. (2013). Geometric inference on kernel density estimates. Preprint. Available at  arXiv:1307.7760. 1307.7760[46] Phillips, J. M., Wang, B. and Zheng, Y. (2013). Geometric inference on kernel density estimates. Preprint. Available at  arXiv:1307.7760. 1307.7760

47.

[47] The CGAL Project (2015). CGAL User and Reference Manual. CGAL Editorial Board, 4.6 edition.[47] The CGAL Project (2015). CGAL User and Reference Manual. CGAL Editorial Board, 4.6 edition.

48.

[48] Sheehy, D. R. (2013). Linear-size approximations to the Vietoris-Rips filtration. Discrete Comput. Geom. 49 778–796.[48] Sheehy, D. R. (2013). Linear-size approximations to the Vietoris-Rips filtration. Discrete Comput. Geom. 49 778–796.

49.

[49] Sheehy, D. R. (2014). The persistent homology of distance functions under random projection. In Computational Geometry (SoCG’14) 328–334. ACM, New York.[49] Sheehy, D. R. (2014). The persistent homology of distance functions under random projection. In Computational Geometry (SoCG’14) 328–334. ACM, New York.

50.

[50] Yogeshwaran, D. and Adler, R. J. (2015). On the topology of random complexes built over stationary point processes. Ann. Appl. Probab. 25 3338–3380.[50] Yogeshwaran, D. and Adler, R. J. (2015). On the topology of random complexes built over stationary point processes. Ann. Appl. Probab. 25 3338–3380.

51.

[51] Yogeshwaran, D., Subag, E. and Adler, R. J. (2014). Random geometric complexes in the thermodynamic regime. submitted. Preprint. Available at  arXiv:1403.11641403.1164[51] Yogeshwaran, D., Subag, E. and Adler, R. J. (2014). Random geometric complexes in the thermodynamic regime. submitted. Preprint. Available at  arXiv:1403.11641403.1164

52.

[52] Zomorodian, A. and Carlsson, G. (2005). Computing persistent homology. Discrete Comput. Geom. 33 249–274.[52] Zomorodian, A. and Carlsson, G. (2005). Computing persistent homology. Discrete Comput. Geom. 33 249–274.

53.

[53] Random number generation in c++11.  https://isocpp.org/files/papers/n3551.pdf.[53] Random number generation in c++11.  https://isocpp.org/files/papers/n3551.pdf.
Copyright © 2017 Institute of Mathematical Statistics
Omer Bobrowski, Matthew Kahle, and Primoz Skraba "Maximally persistent cycles in random geometric complexes," The Annals of Applied Probability 27(4), 2032-2060, (August 2017). https://doi.org/10.1214/16-AAP1232
Received: 1 September 2015; Published: August 2017
Vol.27 • No. 4 • August 2017
Back to Top