Open Access
August 2017 Contact processes on random regular graphs
Steven Lalley, Wei Su
Ann. Appl. Probab. 27(4): 2061-2097 (August 2017). DOI: 10.1214/16-AAP1249
Abstract

We show that the contact process on a random $d$-regular graph initiated by a single infected vertex obeys the “cutoff phenomenon” in its supercritical phase. In particular, we prove that, when the infection rate is larger than the lower critical value of the contact process on the infinite $d$-regular tree, there are positive constants $C$, $p$ depending on the infection rate such that for any $\varepsilon>0$, when the number $n$ of vertices is large then (a) at times $t<(C-\varepsilon)\log n$ the fraction of infected vertices is vanishingly small, but (b) at time $(C+\varepsilon)\log n$ the fraction of infected vertices is within $\varepsilon$ of $p$, with probability $p$.

References

1.

[1] Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. Universality for first passage percolation on sparse random graphs. Available at  arXiv:1210.68391210.6839 MR3693970 10.1214/16-AOP1120 euclid.aop/1502438435 [1] Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. Universality for first passage percolation on sparse random graphs. Available at  arXiv:1210.68391210.6839 MR3693970 10.1214/16-AOP1120 euclid.aop/1502438435

2.

[2] Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European J. Combin. 1 311–316.[2] Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European J. Combin. 1 311–316.

3.

[3] Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Studies in Advanced Mathematics 73. Cambridge Univ. Press, Cambridge.[3] Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Studies in Advanced Mathematics 73. Cambridge Univ. Press, Cambridge.

4.

[4] Bollobás, B. and Fernandez de la Vega, W. (1982). The diameter of random regular graphs. Combinatorica 2 125–134. MR685038 10.1007/BF02579310[4] Bollobás, B. and Fernandez de la Vega, W. (1982). The diameter of random regular graphs. Combinatorica 2 125–134. MR685038 10.1007/BF02579310

5.

[5] Chatterjee, S. and Durrett, R. (2013). A first order phase transition in the threshold $\theta\geq2$ contact process on random $r$-regular graphs and $r$-trees. Stochastic Process. Appl. 123 561–578.[5] Chatterjee, S. and Durrett, R. (2013). A first order phase transition in the threshold $\theta\geq2$ contact process on random $r$-regular graphs and $r$-trees. Stochastic Process. Appl. 123 561–578.

6.

[6] Cranston, M., Mountford, T., Mourrat, J.-C. and Valesin, D. (2014). The contact process on finite homogeneous trees revisited. ALEA Lat. Am. J. Probab. Math. Stat. 11 385–408.[6] Cranston, M., Mountford, T., Mourrat, J.-C. and Valesin, D. (2014). The contact process on finite homogeneous trees revisited. ALEA Lat. Am. J. Probab. Math. Stat. 11 385–408.

7.

[7] Ding, J., Sly, A. and Sun, N. Maximum independent sets on random regular graphs. Available at  arXiv:1310.47871310.4787 MR3689942 10.1007/s11511-017-0145-9 euclid.acta/1502989202 [7] Ding, J., Sly, A. and Sun, N. Maximum independent sets on random regular graphs. Available at  arXiv:1310.47871310.4787 MR3689942 10.1007/s11511-017-0145-9 euclid.acta/1502989202

8.

[8] Durrett, R. and Jung, P. (2007). Two phase transitions for the contact process on small worlds. Stochastic Process. Appl. 117 1910–1927.[8] Durrett, R. and Jung, P. (2007). Two phase transitions for the contact process on small worlds. Stochastic Process. Appl. 117 1910–1927.

9.

[9] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355–378.[9] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355–378.

10.

[10] Hoory, S., Linial, N. and Wigderson, A. (2006). Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43 439–561 (electronic). MR2247919 10.1090/S0273-0979-06-01126-8[10] Hoory, S., Linial, N. and Wigderson, A. (2006). Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43 439–561 (electronic). MR2247919 10.1090/S0273-0979-06-01126-8

11.

[11] Lalley, S. P. and Sellke, T. (1998). Limit set of a weakly supercritical contact process on a homogeneous tree. Ann. Probab. 26 644–657.[11] Lalley, S. P. and Sellke, T. (1998). Limit set of a weakly supercritical contact process on a homogeneous tree. Ann. Probab. 26 644–657.

12.

[12] Liggett, T. (1996). Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 1675–1710.[12] Liggett, T. (1996). Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 1675–1710.

13.

[13] Liggett, T. M. (2005). Interacting Particle Systems. Springer, Berlin.[13] Liggett, T. M. (2005). Interacting Particle Systems. Springer, Berlin.

14.

[14] Lubetzky, E. and Sly, A. (2010). Cutoff phenomena for random walks on random regular graphs. Duke Math. J. 153 475–510.[14] Lubetzky, E. and Sly, A. (2010). Cutoff phenomena for random walks on random regular graphs. Duke Math. J. 153 475–510.

15.

[15] Madras, N. and Schinazi, R. (1992). Branching random walks on trees. Stochastic Process. Appl. 42 255–267.[15] Madras, N. and Schinazi, R. (1992). Branching random walks on trees. Stochastic Process. Appl. 42 255–267.

16.

[16] Morrow, G., Schinazi, R. and Zhang, Y. (1994). The critical contact process on a homogeneous tree. J. Appl. Probab. 31 250–255. MR1260587 10.2307/3215251[16] Morrow, G., Schinazi, R. and Zhang, Y. (1994). The critical contact process on a homogeneous tree. J. Appl. Probab. 31 250–255. MR1260587 10.2307/3215251

17.

[17] Mountford, T. S. (1993). A metastable result for the finite multidimensional contact process. Canad. Math. Bull. 36 216–226.[17] Mountford, T. S. (1993). A metastable result for the finite multidimensional contact process. Canad. Math. Bull. 36 216–226.

18.

[18] Mourrat, J.-C. and Valesin, D. Phase transition of the contact process on random regular graphs. Available at  arXiv:1405.08651405.0865[18] Mourrat, J.-C. and Valesin, D. Phase transition of the contact process on random regular graphs. Available at  arXiv:1405.08651405.0865

19.

[19] Pemantle, R. (1992). The contact process on trees. Ann. Probab. 20 2089–2116.[19] Pemantle, R. (1992). The contact process on trees. Ann. Probab. 20 2089–2116.

20.

[20] Stacey, A. (1996). The existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 1711–1726. MR1415226 10.1214/aop/1041903203 euclid.aop/1041903203 [20] Stacey, A. (1996). The existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 1711–1726. MR1415226 10.1214/aop/1041903203 euclid.aop/1041903203

21.

[21] Stacey, A. (2001). The contact process on finite homogeneous trees. Probab. Theory Related Fields 121 551–576.[21] Stacey, A. (2001). The contact process on finite homogeneous trees. Probab. Theory Related Fields 121 551–576.

22.

[22] Wormald, N. C. (1999). Models of random regular graphs. In Surveys in Combinatorics, 1999 (Canterbury). London Mathematical Society Lecture Note Series 267 239–298. Cambridge Univ. Press, Cambridge.[22] Wormald, N. C. (1999). Models of random regular graphs. In Surveys in Combinatorics, 1999 (Canterbury). London Mathematical Society Lecture Note Series 267 239–298. Cambridge Univ. Press, Cambridge.
Copyright © 2017 Institute of Mathematical Statistics
Steven Lalley and Wei Su "Contact processes on random regular graphs," The Annals of Applied Probability 27(4), 2061-2097, (August 2017). https://doi.org/10.1214/16-AAP1249
Received: 1 April 2015; Published: August 2017
Vol.27 • No. 4 • August 2017
Back to Top