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We initiate the study of persistent homology of random geometric simpli-
cial complexes. Our main interest is in maximally persistent cycles of degree-
k in persistent homology, for a either the Čech or the Vietoris–Rips filtration
built on a uniform Poisson process of intensity n in the unit cube [0,1]d .
This is a natural way of measuring the largest “k-dimensional hole” in a ran-
dom point set. This problem is in the intersection of geometric probability
and algebraic topology, and is naturally motivated by a probabilistic view of
topological inference.

We show that for all d ≥ 2 and 1 ≤ k ≤ d − 1 the maximally persistent
cycle has (multiplicative) persistence of order

�

((
logn

log logn

)1/k)
,

with high probability, characterizing its rate of growth as n → ∞. The im-
plied constants depend on k, d and on whether we consider the Vietoris–Rips
or Čech filtration.

1. Introduction. The study of topological properties of random graphs has a
long history, dating back to classical results on the connectivity, cycles and largest
components in Erdős–Renyi graphs [29, 30]. Generalizations have been devel-
oped in several directions. One direction is to consider different models of random
graphs (see, e.g., [12, 44]). Another direction is to consider higher-dimensional
topological properties, resulting in the study of random simplicial complexes rather
than random graphs, where in addition to vertices and edges the structure consists
also of triangles, tetrahedra and higher dimensional simplexes (see, e.g., [3, 37,
39, 41]). The study of random simplicial complexes focuses mainly on their ho-
mology, which is a natural generalization of the notions of connected components
and cycles in graphs. Homology is an algebraic topology framework that is used
to study cycles in various dimensions, where (loosely speaking) a k-dimensional
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cycle can be thought of as the boundary of a k +1 dimensional solid (see Section 2
for more details).

In random geometric simplicial complexes, the vertices are generated by a ran-
dom point process (e.g., Poisson) in a metric space, and then geometric condi-
tions are applied to determine which of the simplexes should be included in the
complex. The two most studied models are the random Čech and Vietoris-Rips
complexes (see Section 2 for definitions). Several recent papers have studied vari-
ous aspects of the topology of these complexes (see [6, 9, 11, 38, 40, 50, 51] and
the survey [8]). These papers contain theorems which characterize the phase tran-
sitions where homology appears and disappears, estimates for the Betti numbers
(the number of k-dimensional cycles), limiting distributions, etc. While this line of
research presents a deep and interesting theory, it is also motivated by data analysis
applications.

Topological data analysis (TDA) is a recently emerging field that focuses on
extracting topological features from sampled data, and uses them as an input for
various data analytic and statistical algorithms. The main idea behind it is that
topological properties could help us understand the structure underlying the data,
and provide us with a set of features that are robust to various types of deformations
(cf. [16, 17, 33]). Geometric complexes play a key role in computing topological
features from a finite set of data points. The construction of these complexes usu-
ally depends on one or more parameters (e.g., radius of balls drawn around the
sample points), and the ability to properly extract topological features depends
on choosing this parameter correctly. One of the most powerful tools in TDA is
a multi-scale version of homology, called persistent homology (see Section 2),
which was developed mainly to solve this problem of sensitive parameter tuning.
In persistent homology, instead of finding the best parameter values, one considers
the entire range of possible values. As the parameter values change, the observed
topological features change (e.g., cycles are created and filled in). Persistent ho-
mology tracks these changes and provides a way to measure the significance of
the features that show up in this process. One way to represent the information
provided by persistent homology is via barcodes; see Figure 2. Here, every bar
corresponds to a feature in the data and its endpoints correspond to the times (pa-
rameter value) where the feature was created and terminated. The underlying phi-
losophy in TDA is that topological features that survive (or persist) through a long
range of parameter values are significant and related to real topological structures
in the data (or the “topological signal”), whereas ones with a shorter lifespan are
artifacts of the finite sampling, and correspond to noise (see [31]). This approach
motivates the following question: How long does a “long range” of parameters (or
a long bar in the barcode) have to be in order to be considered significant? Phrased
differently—how long should we expect this range to be, if the sample points were
entirely random, without any underlying structure or features? This is the main
question we try to answer in this paper.
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To be more specific, in this paper we study the case where the data points
are generated by a homogeneous Poisson process in the unit d-dimensional cube
[0,1]d (d > 1) with intensity n, denoted by Pn. We consider the persistent homol-
ogy of both the Čech complex C(Pn, r) and the Rips complex R(Pn, r), where
the scale parameter r is the radius of the balls used to create these complexes (see
Section 2). We denote by �k(n) the maximal persistence of a cycle in the degree k

persistent homology (1 ≤ k ≤ d − 1) of either the Čech or the Rips complex. Note
that �k(n) is a property of the persistent homology, where we consider all possible
radii and, therefore, it does not depend r . Our main result shows that, with high
probability,

�k(n) ∼
(

logn

log logn

)1/k

,

in the sense that �k(n) can be bounded from above and below by a matching
term up to a constant factor. The precise definitions and statements are presented
in Section 3. The proofs for the upper and lower bounds require very different
techniques. To prove the upper bound, we present a novel “isoperimetric-type”
statement (Lemma 4.1) that links the persistence of a cycle to the number of ver-
tices that are used to form it. The lower bound proof uses an exhaustive search for
a specific construction that guarantees the creation of a persistent cycle.

In addition to proving the theoretical result, in Section 7 we also present ex-
tensive numerical experiments confirming the computed bounds and empirically
computing the implied constants. These results also suggest a conjectural law of
large numbers. Finally, we note that while the results in this paper are presented for
the homogeneous Poisson process on a d-dimensional cube, they should hold with
minor adjustments also to nonhomogenous processes as well as for shapes other
than the cube. We also predict that our statements will hold for more generic point
processes (e.g., weakly sub-Poisson processes), using some of the statements made
in [50]. The detailed analysis of these more generic cases is left as future work.

Earlier work: The study of the topology of random geometric complexes has
been growing rapidly in the past decade. Most of the results so far are related to
homology rather than persistent homology (i.e., fixing the parameter value). The
study in [11, 38] focuses mainly on the phase transitions for appearance and van-
ishing of homology, which can be viewed as higher dimensional generalizations
of the phase transition for connectivity in random graphs. In [6, 9, 40, 51], more
emphasis was given to the distribution of the Betti numbers, namely the number
of cycles that appear. Similar questions for more general point processes have also
been considered in [50]. In [1, 43], simplicial complexes generated by distributions
with an unbounded support were studied from an extreme value theory perspective.
The recent survey [8] overviews recent progress in this area.

The study of random persistent homology, on the other hand, is at its very ini-
tial stages. Recall that the 0th homology represent the connected components in a
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space. Thus, the results in [2, 45] about the connectivity threshold in random geo-
metric graphs could be viewed as related to the 0th persistence homology of either
the Čech or the Rips complex. The first study of persistent homology in degree
k ≥ 1 for a random setting was for n points chosen uniformly i.i.d. on a circle by
Bubenik and Kim [14]. In this setting, they used the theory of order statistics to
describe the limiting distribution of the persistence diagram. Another direction of
study is the persistence diagrams of random functions. In [7], the authors study the
“persistent Euler characteristic” of Gaussian random fields.

Another line of research (see, e.g., [10, 19–23, 31]) focuses on statistical in-
ference using persistent homology, and include results about confidence intervals,
consistency and robustness for topological estimation, subsampling and bootstrap-
ping methods and more.

Finally, we point out the earlier work in geometric probability [4], measuring
the largest convex hole for a set of random points in a convex planar region R.
A convex hole is generated when there is a subset of points for which the convex
hull is empty (i.e., contains no other points from the set). The size of a convex hole
is then measured combinatorially, as the number of vertices generating the hole.
In [4], it is shown that the largest hole has �(logn/ log logn) vertices, regardless of
the shape of the ambient convex region R. In this paper, we are also measuring the
size of the largest hole, but in a very different sense. We are using the algebraic-
topological notion of holes (via persistent homology), rather than combinatorial
notion of counting vertices, so as far as we can tell the fact that these two ways of
measuring the size of the largest hole have the same right of growth (when d = 2
and k = 1) is something of a coincidence.

As far as we know, this article presents the first detailed probabilistic analysis
for persistent kth homology of random geometric complexes, for k ≥ 1.

The structure of the paper is as follows. In Section 2, we provide the topological
and probabilistic building blocks we will use throughout the paper. In Section 3,
we present the main result—the asymptotic behavior of maximally persistent cy-
cles. In Sections 4 and 5, we provide the main parts of the proof for the random
Čech complex (upper and lower bounds, respectively). Some parts of the proofs
require more knowledge in algebraic topology than the others, and we present
those in Section 6 (including the proof for the Rips complex). Finally, in Section 7
we present simulation results, complementing the main (asymptotic) result of the
paper.

2. Background. In this section, we provide a brief introduction to the topo-
logical and probabilistic notions used in this paper.

2.1. Homology. We wish to introduce the concept of homology here in an in-
tuitive rather than in a rigorous way. For a comprehensive introduction to homol-
ogy, see [35] or [42]. Let X be a topological space, and F a field. The homology
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of X with coefficients in F is a set of vector spaces {Hk(X)}∞k=0, which are topo-
logical invariants of X (i.e., they are invariant under homeomorphisms). We note
that the standard notation is Hk(X,F) where F denotes the coefficient ring, but we
suppress the field and let Hk(X) denote homology with F coefficients throughout
this article.

The dimension of the zeroth homology H0(X) is equal to the number of con-
nected components of X. For k ≥ 1, the basis elements of the kth homology Hk(X)

correspond to k-dimensional “holes” or (nontrivial-) “cycles” in X. An intuitive
way to think about a k-dimensional cycle is as the result of taking the boundary
of a (k + 1)-dimensional body. For example, if X a circle then H0(X) ∼= F, and
H1(X) ∼= F. If X is a 2-dimensional sphere, then H0(X) ∼= F and H2(X) ∼= F,
while H1(X) ∼= {0} (since every loop on the sphere can be shrunk to a point). In
general, if X is a n-dimensional sphere, then

Hk(X) ∼=
{
F, k = 0, n,

0, otherwise.

We will use H∗(X) when making a statement that applies to all the homology
groups simultaneously. In addition to providing information about spaces, homol-
ogy is also used to study mappings between spaces. If f : X → Y is a map between
two topological spaces, then it induces a map in homology f∗ : H∗(X) → H∗(Y ).
This map is a linear transformation between vector spaces which tells us how cy-
cles in X map to cycles in Y . These mappings are important when discussing
persistent homology.

Finally, we say that two spaces X,Y are homotopy equivalent, denoted by X �
Y , if X can be continuously deformed to Y (loosely speaking). In particular, if X �
Y then H∗(X) ∼= H∗(Y ) (isomorphic). For example, a circle, an empty triangle and
an annulus are all homotopy equivalent.

2.2. The Čech and Vietoris–Rips complexes. As mentioned earlier, the Čech
and the Rips complexes are often used to extract topological information from
data. These complexes are abstract simplicial complexes [35] and in our case will
be generated by a set of points in R

d . These complexes are tied together with the
union of balls we define as

(2.1) U(P, r) = ⋃
p∈P

Br(p),

where P ⊂ R
d , and Br(p) is a d-dimensional ball of radius r around p. Note that

the set P does not have to be discrete, in which case we can think of U(P, r) as a
“tube” around P . The definitions of the complexes are as follows.

DEFINITION 2.1 (Čech complex). Let P = {x1, x2, . . . , xn} be a collection of
points in R

d , and let r > 0. The Čech complex C(P, r) is constructed as follows:
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(1) The 0-simplices (vertices) are the points in P .
(2) A k-simplex [xi0, . . . , xik ] is in C(P, r) if

⋂k
j=0 Br(xij ) �=∅.

DEFINITION 2.2 (Vietoris–Rips complex). Let P = {x1, x2, . . . , xn} be a col-
lection of points in R

d , and let r > 0. The Vietoris–Rips complex R(P, r) is con-
structed as follows:

(1) The 0-simplices (vertices) are the points in P .
(2) A k-simplex [xi0, . . . , xik ] is in R(P, r) if Br(xij ) ∩ Br(xil ) �= ∅ for all

0 ≤ j, l ≤ k.

Note that the Rips complex R(P, r) is the flag (or clique) complex built on top
of the geometric graph G(P,2r), where two vertices xi, xj are connected if and
only if ‖xi −xj‖ ≤ 2r . The difference between the Čech and the Rips complexes, is
that for the Čech complex we require all k+1 balls to intersect in order to include a
face, whereas for the Rips complex we only require pairwise intersections between
the balls. Figure 1 shows an example for the Čech and Rips complexes constructed
from the same set of points and the same radius r , and highlights this difference.

Part of the importance of the Čech complex stems from the following state-
ment known as the “Nerve lemma” (see [13]). We note that the original lemma is
more general then stated here, but we will only be using it in the following special
case.

LEMMA 2.3. Let P ⊂ R
d be a finite set of points. Then C(P, r) is homotopy

equivalent to U(P, r), and in particular

H∗
(
C(P, r)

) ∼= H∗
(
U(P, r)

)
.

The Rips complex is commonly used in applications, as in some practical cases
it requires less computational resources. In an arbitrary metric space, using the

FIG. 1. On the left—the Čech complex C(P, r), on the right—the Rips complex R(P, r) with the
same set of vertices and the same radius. We see that the three left-most balls do not have a common
intersection and, therefore, do not generate a 2-dimensional face in the Čech complex. However,
since all the pairwise intersections occur, the Rips complex does include the corresponding face.
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triangle inequality we have the following inclusions of complexes:

(2.2) C(P, r) ⊂ R(P, r) ⊂ C(P,2r).

For subsets of Euclidean space, the constant 2 can be improved (see [25]).

2.3. Persistent homology. Let P ⊂ R
d , and consider the following indexed

sets:

U := {
U(P, r)

}∞
r=0, C := {

C(P, r)
}∞
r=0, R := {

R(P, r)
}∞
r=0.

These three sets are examples of “filtrations”—nested sequences of sets, in the
sense that Fr1 ⊂ Fr2 if r1 < r2 (where F is either U , C, or R).

As the parameter r increases, the homology of the spaces Fr may change. The
persistent homology of F , denoted by PH∗(F), keeps track of this process. Briefly,
PHk(F) contains information about the kth homology of the individual spaces Fr

as well as the mappings between the homology of Fr1 and Fr2 for every r1 < r2

(induced by the inclusion map). The birth time of an element (a cycle) in PH∗(F)

can be thought of as the value of r where this element appears for the first time.
The death time is the value of r where an element vanishes, or merges with another
existing element.

Formally, we consider a filtration with parameter values from [0,∞), the birth
and death times can be defined as the following.

DEFINITION 2.4. The birth of an element γ ∈ PHk(F) is

γbirth := min
{
r : γ ∈ Hk(Xr)

}
.

DEFINITION 2.5. The death time of an element γ ∈ PHk(F) is

γdeath := min
{
r : γ ∈ ker

(
Hk(Xγbirth) → Hk(Xr)

)}
.

One useful way to describe persistent homology is via the notion of barcodes
[33]. A barcode for the persistent homology of a filtration F is a collection of
graphs, one for each order of homology group. A bar in the kth graph, starting at
b and ending at d (b ≤ d) indicates the existence of an element of PHk(F) (or a
k-cycle) whose birth and death times are b and d , respectively. In Figure 2, we
present the barcode for the filtration U where P is a set of 50 random points lying
inside an annulus. The intuition is that the longest bars in the barcode represent
“true” features in the data (e.g., the connected component and the 1-cycle in the
annulus), whereas the short bars are regarded to as “noise.” It can be shown that the
pairing between birth and death times is sufficient to yield a unique barcode [52].



MAXIMALLY PERSISTENT CYCLES 2039

FIG. 2. (top) Fr = Ur is a union of balls of radius r around P—a random set of n = 50 points,
uniformly distributed on an annulus in R

2. We present five snapshots of this filtration. (bottom) The
persistent homology of the filtration F . The x-axis is the radius r , and the bars represent the cycles
that born and die. For H0, we observe that at radius zero the number of components is exactly n

and as the radius increases components merge (or die). The 1-cycles show up later in this process.
There are two bars that are significantly longer than the others (one in H0 and one in H1). These
correspond to the true features of the annulus.

2.4. The Poisson process. In this paper, the set of points we use to construct
either a Čech or a Rips complex will be generated by a Poisson process Pn, which
can be defined as follows. Let X1,X2, . . . be an infinite sequence of i.i.d. (inde-
pendent and identically distributed) random variables in R

d . We will focus on the
case where Xi is uniformly distributed on the unit cube Qd = [0,1]d . We note,
however, that our results hold (with minor adjustments) for any distribution with
a compact support and density bounded above and below. Next, fix n > 0, take
N ∼ Poisson(n), independent of the Xi ’s, and define

(2.3) Pn = {X1,X2, . . . ,XN }.
Two properties characterizing the Poisson process Pn are:

(1) For every Borel-measurable set A ⊂ R
d we have that

|Pn ∩ A| ∼ Poisson
(
nVol

(
A ∩Qd))

,

where |·| stands for the set cardinality, and Vol(·) is the Lebesgue measure.
(2) If A,B ⊂ R

d are disjoint sets, then |Pn ∩ A| and |Pn ∩ B| are independent
random variables (this property is known as “spatial independence”).
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The Poisson process Pn is closely related to the fixed-size set {X1, . . . ,Xn}. Note
that the expected number of points in Pn is E{N} = n. In fact, most results known
for one of these processes apply to the other with very minor, or no, changes. This
is true for the results presented in this paper as well. However, we choose to focus
only on Pn, mainly due to its spatial independence property.

In the following, we study asymptotic phenomena, when n → ∞. In this con-
text, if En is an event that depends on n, we say that En occurs with high proba-
bility (w.h.p.) if limn→∞P(En) = 1.

3. Maximally persistent cycles. For the remainder of this paper, assume that
d ≥ 2 and 1 ≤ k ≤ d − 1 are fixed. Let Pn be the Poisson process defined above,
and define

U(n, r) := U(Pn, r), C(n, r) := C(Pn, r), R(n, r) := R(Pn, r).

Let PHk(n) be the kth persistent homology of either of the filtrations for U , C, or
R (it will be clear from the context which filtration we are looking at). Note that
from the Nerve Lemma (2.3), we have that U(n, r) � C(n, r), so we will state the
results only for C and R. However, some of the statements we make are easier to
prove for the balls in U rather than the simplexes in C, and we shall do so.

For every cycle γ ∈ PHk(n), we denote by γbirth, γdeath the birth and death times
(radii) of γ , respectively. Commonly (see [16, 33]), the persistence of a cycle is
measured by the length of the corresponding bar in the barcode, namely by the
difference δ(γ ) := γdeath − γbirth. In this paper, however, we choose to define the
persistence of γ in a multiplicative way as

(3.1) π(γ ) := γdeath

γbirth
.

There are several reasons for defining the persistence of a cycle this way:

• This definition is equivalent to saying that we measure the difference in a loga-
rithmic scale. Studying persistent homology in the logarithmic scale is common
[15, 22, 36, 46, 49].

• This definition is scale invariant, which is desirable, since “topological signifi-
cance” should focus on shape rather than size. For example, consider the cycles
corresponding to γ1, γ2 in Figure 3. These two cycles are created by exactly
the same configuration of points, just at a different scale. Therefore, we would
like to say that these cycles are equally significant. Clearly, δ(γ1) > δ(γ2), while
π(γ1) = π(γ2). Thus, our definition works better in this case.

In addition, this scale invariance guarantees that a linear change in the units
used to measure the data (e.g., from inches to cm, or from degrees Celsius to
Fahrenheit) will not affect the persistence value.

• One purpose of using a persistence measure is to differentiate between cycles
that capture phenomena underlying the data, and those who are created merely
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FIG. 3. Multiplicative persistence as a significance measure. The dataset in this example consists
of a few hundred points sampled from two annuli, and two outliers (on the right). We are interested
in the 1-cycles that denoted by γ1, γ2, γ3, that correspond to the two annuli and the triangle on the
right.

due to chance. To this end, the “physical size” of the cycle is not necessar-
ily the correct measure. Consider, for example, the cycles corresponding to γ2

and γ3 in Figure 3. Intuitively, we would like to claim that γ2 is more sig-
nificant than γ3, as the former is created by a very “stable” configuration of
points, while the latter is created by outliers that clearly tell us nothing about
the underlying structure. In this example, taking the “additive” persistence we
will have that δ(γ2) < δ(γ3), simply because the overall size of the annulus is
much smaller than that of the triangle. However, taking multiplicative persis-
tence yields π(γ2) > π(γ3), which is more consistent with our intuition.

• Both the Čech and Vietoris–Rips complexes are important in TDA, and the nat-
ural relationship between these complexes is a multiplicative one [see (2.2)].
Because of this relationship, our results hold for both random Čech and Rips
complexes, up to a constant factor (see Section 6.3). Indeed, the majority of
approximation results for geometric complexes are multiplicative [18, 26, 48],
making multiplicative persistence more relevant to existing stability guarantees.

• The argument from Section 5 of this paper suggests that there are many cycles
γ for which γbirth = o(γdeath). In this case, it is hard to differentiate between
cycles by looking at γdeath − γbirth ≈ γdeath.
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Our main interest is in the maximal persistence over all k-cycles, defined as

(3.2) �k(n) := max
γ∈PHk(n)

π(γ ).

More specifically, we are interested in the asymptotic behavior of �k(n) as n →
∞. The main result in this paper is that �k(n) scales like the function �k(n),
defined by

(3.3) �k(n) :=
(

logn

log logn

)1/k

.

In particular, we have the following theorem.

THEOREM 3.1. For fixed d ≥ 2, and 1 ≤ k ≤ d − 1, let Pn be a Poisson pro-
cess on the unit cube [0,1]d defined in (2.3), and let PHk(n) be the kth persistent
homology of either C, or R. Then there exist positive constants Ak,Bk such that

lim
n→∞P

(
Ak ≤ �k(n)

�k(n)
≤ Bk

)
= 1.

REMARKS.

(1) The constants Ak and Bk depend on k (the homology degree), d (the am-
bient dimension), and on whether we consider the Čech or the Rips complex. We
conjecture that a law of large numbers holds, namely that �k(n)/�k(n) → Ck for
some Ak ≤ Ck ≤ Bk . For some evidence for this conjecture, see the experimental
results in Section 7. In the following sections, we will prove Theorem 3.1.

(2) The additive persistence δ(γ ) can be bounded naively by the result on the
contractibility of the Čech complex in [38]. More concretely, Theorem 6.1 states
that if r ≥ c(

logn
n

)1/d then the Čech complex is contractible (w.h.p.). This implies

that for every cycle γ we have δ(γ ) ≤ γdeath ≤ c(
logn

n
)1/d . Similar statements can

be made about PH0 using the connectivity radius in [2, 45] (which is of the same
(logn/n)1/d scale). However, these are only crude upper bounds on the additive
persistence, that do not differentiate between the different cycles in persistent ho-
mology, or even between different degrees of homology (note that these bounds do
not depend on k).

(3) The study in [38] suggests the following upper bound for �k(n). As
mentioned before, we know that γdeath ≤ c(

logn
n

)1/d for all γ . In addition, the
analysis in [38] shows that if nk+1rdk → 0 then Hk(C(n, r)) = 0, which im-

plies that γbirth ≥ c′n− k+2
d(k+1) for some c′ > 0. Therefore, we have that π(γ ) =

O((logn)1/dn
1

d(k+1) ). However, as we shall see later, this is a very crude upper
bound.
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4. Proof—upper bound. For this section and the next one, consider the Čech
complex only. We want to prove the upper bound in Theorem 3.1. That is, we need
to show that there exists a constant Bk > 0 depending only on k and d , so that with
high probability

�k(n) ≤ Bk�k(n) = Bk

(
logn

log logn

)1/k

.

The main idea in proving the upper bound in Theorem 3.1 is to show that
large cycles require the formation of a large connected component in C(n, r) at
a very early stage (small radius r). To this end, we will provide two bounds: (1) a
lower bound for the size of the connected component supporting a large cycle
(Lemma 4.1), and (2) an upper bound for the size of connected components in
C(n, r) for small values of r (Lemma 4.2).

LEMMA 4.1. Let γ ∈ PHk(n), with γbirth = r and π(γ ) = p. Then there exists
a constant C1 such that C(n, r) contains a connected component with at least
m = C1p

k vertices. The constant C1 depends on k, d only.

The proof for this lemma requires more working knowledge in algebraic topol-
ogy than the rest of this paper, and we defer it to Section 6. At this point, we would
like to suggest an intuitive explanation. Suppose that C(n, r) contains a k-cycle
such that all the points generating it lie on a k-dimensional sphere of radius R, and
such that there are no points of Pn inside the sphere. In that case, the death time
of the cycle will be R and then π(γ ) = p ≥ R/r . The minimum number of balls
of radius r required to cover a k-dimensional sphere of radius R is known as the
“covering number” and is proportional to (R/r)k = pk . The cycle created is then
a part of a connected component of C(n, r) containing at least C × pk vertices.
Intuitively, creating a cycle with the same birth and death times in any other way
(i.e., not necessarily around a sphere) will require coverage of an area larger than
the k-dimensional sphere, and therefore larger connected components. To make
this statement precise, in Section 6 we present an isoperimetric-type inequality for
k-cycles. Note that this statement is completely deterministic (i.e., nonrandom).

The following lemma bounds the number of vertices in a connected component
of the Čech complex C(n, r), for small values of r .

LEMMA 4.2. Let α > 0 be fixed. There exists a constant C2 > 0 depending
only on α and d such that if

nrd ≤ C2

(logn)α

and

m ≥ α−1 logn

log logn
,



2044 O. BOBROWSKI, M. KAHLE AND P. SKRABA

then with high probability C(n, r) has no connected components with more than m

vertices.

PROOF OF LEMMA 4.2. Let Nm(r) be the number of subsets of Pn with m

vertices that are connected in C(n, r). We can write Nm(r) as∑
Y⊂Pn

1
{
C(Y, r) connected

}
,

where the sum is over all sets Y of m vertices. We will show that choosing r and
m as the lemma states, we have P(Nm(r) > 0) → 0 which implies the statement
of the lemma.

By Palm theory (see, e.g., Theorem 1.6 of [44]) we have that

E
{
Nm(r)

} = nm

m!P
(
C
({X1, . . . ,Xm}, r)

is connected
)
,

where Xi ∼ U([0,1]d) are i.i.d. variables. If C({X1, . . . ,Xm}, r) is connected,
then the underlying graph must contain a subgraph isomorphic to a tree on m

vertices. Suppose that 	 is a labelled tree on the vertices {1, . . . ,m}. Assum-
ing that vertex 1 is the root, for 2 ≤ i ≤ m let par(i) be the parent of vertex
i in the tree. Suppose also that the vertices are ordered so that par(i) < i. If
C({X1, . . . ,Xm}, r) contains 	 then every Xi must be connected to Xpar(i) which
implies that Xi ∈ B2r (Xpar(i)). Therefore,

P
(
C
({X1, . . . ,Xm}, r)

contains 	
) ≤ P

(
Xi ∈ B2r (Xpar(i)),∀2 ≤ i ≤ m

)
≤

∫
[0,1]d

∫
B2r (xpar(2))

· · ·
∫
B2r (xpar(m))

dxm · · ·dx1

= (
ωd2drd)m−1

.

The second inequality is due to the effect of the boundary of cube. The same bound
holds for any ordering of the vertices. It is known that the total number of labelled
trees on m vertices is mm−2 and, therefore, we have

E
{
Nm(r)

} ≤ nm

m! m
m−2(

ωd2drd)(m−1)
.

From Stirling’s approximation, we have that m! ≥ (m/e)m and, therefore,

E
{
Nm(r)

} ≤ nmemm−2(
ωd2drd)(m−1) = e

n

m2

(
eωd2dnrd)m−1

.

Defining C2 = 1
2(eωd2d)−1, if nrd ≤ C2(logn)−α then

E
{
Nm(r)

} ≤ e
n

m2 e−(m−1)(α log logn+log 2).
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If m ≥ α−1 logn
log logn

, we therefore have (for n large enough):

E
{
Nm(r)

} ≤ e

m2 ,

and e/m2 → 0 as n → ∞.
Finally, by Markov’s inequality, P(Nm(r) > 0) ≤ E{Nm(r)}, and therefore we

have that P(Nm(r) > 0) → 0 which completes the proof. �

With these two lemmas, we can prove the upper bound in Theorem 3.1.

PROOF OF THEOREM 3.1—UPPER BOUND. Fix a value α > 0, and consider
two kinds of k-cycles: The early-born cycles are the ones created at a radius r

satisfying nrd ≤ C2(logn)−α (see Lemma 4.2). The late-born cycles are all the
rest.

If γ ∈ PHk(n) is an early-born cycle, then according to Lemma 4.2 it is part
of a connected component with m < α−1 logn

log logn
vertices. If π(γ ) = p, then from

Lemma 4.1 we have that C1p
k ≤ m. Combining these two statements, we have

that with high probability,

π(γ ) ≤ (C1α)−1/k

(
logn

log logn

)1/k

.

Therefore, π(γ ) ≤ Bk�k(n), with Bk = (C1α)−1/k .
Suppose now that γ ∈ PHk(n) is a late-born cycle. This implies that γbirth = r

where nrd > (logn)−α , or in other words that γbirth > ( 1
n(logn)α

)1/d . Next, in [38]

it is shown (see Theorem 6.1) that there exists C > 0 such that if r ≥ C(
logn

n
)1/d

then with high probability C(n, r) is contractible (i.e., can be “shrunk” to a point
and, therefore, has no nontrivial cycles). In particular, this implies that γdeath ≤
C(

logn
n

)1/d for every cycle γ . Thus, for late-born cycles γ

π(γ ) < C(logn)(1+α)/d .

Thus, for any α < d/k − 1, we have that with high probability the persistence of
late-born cycles γ satisfies

π(γ ) = o

((
logn

log logn

)1/k)
. �

5. Proof—lower bound. In this section, we prove the lower bound part of
Theorem 3.1 for the Čech complex C(n, r), namely that there exists Ak > 0 (de-
pending on k and d), such that with high probability,

�k(n) ≥ Ak�k(n) = Ak

(
logn

log logn

)1/k

.
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In other words, we need to show that with a high probability there exists γ ∈
PHk(n) with π(γ ) ≥ Ak�k(n).

To show that, we take the unit cube Q = [0,1]d and divide it into small cubes
of side 2L. The number of small cubes we can fit in Q denoted by M satisfies
M ≥ C3L

−d for some C3 > 0. Denoting the small cubes by Q1, . . . ,QM , we want
to show that at least one of these cubes contains a large cycle. Let Qi be one of
these cubes, and think of it as centered at the origin, so that Qi = [−L,L]d . Let
� < L/4, denote L̂ = �L/�� × �, and define

S
(1)
i = [−L̂/2, L̂/2]k+1 × [−�/2, �/2]d−k−1,

S
(2)
i = [−L̂/2 + �, L̂/2 − �]k+1 × [−�/2, �/2]d−k−1,

Si = S
(1)
i \S(2)

i .

In other words, Si is a “thickened” version of the boundary of a k + 1 dimensional
cube of side L̂ ≈ L (see Figure 4).

We will show that if the balls of radius r around Pn cover Si but leave most of
Qi empty then C(n, r) would have a k-dimensional cycle. Choosing L and � prop-
erly we can make sure that this cycle has the desirable persistence. More specif-
ically, take Si and split it into m cubes of side �, denoted by Si,1, Si,2, . . . , Si,m

(see Figure 4). The number of boxes m is almost proportional to the ratio of the
volumes of Si and the Si,j -s and, therefore, m ≤ C4(L/�)k for some C4 > 0. The
following lemma uses the process Pn but is in fact nonrandom, and provides a
lower-bound to the persistence of the cycles we are looking for.

LEMMA 5.1. Suppose that for every 1 ≤ j ≤ m we have |Si,j ∩Pn| = 1, and
|Qi ∩Pn| = m. Then there exists γ ∈ PHk(n) with π(γ ) ≥ 1

4
√

d
× L

�
.

FIG. 4. The construction we are examining to find a maximal cycle, for d = 3 and k = 1. Qi is the
big box of side 2L, and Si is construction made of small boxes in the middle of it, which is homotopy
equivalent to a circle.
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The proof of this lemma also requires some working knowledge in algebraic
topology and, therefore, we postpone it to Section 6. Intuitively, the assumptions
of the lemma guarantee that for every r ∈ [r1, r2], where r1 = √

d� and r2 = L/4,
the union of balls U(Pn ∩ Qi, r) covers Si , and is disconnected from the rest of
the balls. Therefore, its shape is “similar” to Si and forms a nontrivial k-cycle.
Since this cycle exists through the entire range [r1, r2], its persistence is greater
than r2/r1 = L/4

√
d�.

Following Lemma 5.1, we define the event

Ei = {∀1 ≤ j ≤ m : |Si,j ∩Pn| = 1, and |Qi ∩Pn| = m
}
,

then E = E1 ∪E2 ∪· · ·∪EM is the event that at least one of the Qi cubes contains a
large cycle. Lemma 5.1 suggests that to prove there exists a large cycle it is enough
to show that E occurs with high probability. We start by bounding the probability
of the complement event. The next lemma shows that given the right choice of
L = L(n) and � = �(n) we can guarantee that E = E(n) satisfies P(E) → 1.

LEMMA 5.2. Let n�d = (logn)−α such that α > d/k, and let L = Ãk�k(n)�

where Ãk ≤ (C4α)−1/k . Then

lim
n→∞P(E) = 1.

PROOF. We start with the probability of Ei . By the spatial independence prop-
erty of the Poisson process, we have

P(Ei) = (
n�d)m

e−n(2L)d

and, therefore,

P
(
Ec) =

M∏
i=1

(
1 − P(Ei)

) = (
1 − (

n�d)m
e−n(2L)d )M ≤ e−M(n�d)me−n(2L)d

.

Thus, in order to prove that P(E) → 1 it is enough to show that

E := M
(
n�d)m

e−n(2L)d → ∞.

Recall that M ≥ C3L
−d and that m ≤ C4(L/�)k . Assuming that n�d < 1, we have

E ≥ C3L
−d(

n�d)C4(L/�)k
e−2dnLd = C3L

−deC4(L/�)k log(n�d)−2dnLd

.

Now, if n�d = (logn)−α < 1 for some α > 0 and L = Ãk�k(n)� for some Ãk > 0,
then

nLd = Ãd
k�d

k (n) · n�d = Ãd
k

(logn)d/k−α

(log logn)d/k
.
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Taking α > d/k yields that nLd → 0 and, therefore,

E ≥ Cn
(log logn)d/k

(logn)d/k−α
e−C4Ã

k
kα logn,

for some constant C. Choosing Ãk such that C4Ã
k
kα < 1 we have E → ∞ which

completes the proof. �

PROOF OF THEOREM 3.1—LOWER BOUND. From Lemma 5.2, we have that
if n�d = (logn)−α and L/� = Ãk�k(n) then with high probability E occurs. From
Lemma 5.1, this implies that with high probability we have a “cubical” cycle γ

with π(γ ) ≥ Ãk�k(n)/4
√

d . Taking Ak = Ãk/4
√

d completes the proof. �

6. Proofs for topological lemmas. As mentioned above, the proofs for Lem-
mas 4.1 and 5.1 require some working knowledge in algebraic topology. In par-
ticular, we will be making use of the definitions of chains, cycles, boundaries and
induced maps in both simplicial and singular homology. For more background,
see [35] or [42]. To make reading the paper fluent for readers who are less familiar
with the subject, we deferred these proofs to this section. Also included in this
section is the translation of Theorem 3.1 from the Čech to the Rips complex.

6.1. Proof of Lemma 4.1. First, we restate the lemma.

LEMMA 4.1. Let γ ∈ PHk(n), with γbirth = r and π(γ ) = p. Then there exists
a constant C1 such that C(n, r) contains a connected component with at least
m = C1p

k vertices. The constant C1 depends on k, d only.

For the sake of simplicity, we will be using homology with coefficients in F =
Z/2Z. Nevertheless, Lemma 4.1 holds using coefficients over any field.

For every two spaces S1 ⊂ S2, we denote i : S1 ↪→ S2 as the inclusion map,
and the induced map in homology will be i∗ : H∗(S1) → H∗(S2). For any fi-
nite set P ⊂ [0,1]d and every r > 0, by the Nerve Lemma 2.3 the spaces
C(P, r) and U(P, r) are homotopy equivalent. Therefore, there are natural maps
h : U(P, r) → C(P, r) and j : C(P, r) → U(P, r) such that the induced maps
h∗ : H∗(U(P, r)) → H∗(C(P, r)) and j∗ : H∗(C(P, r)) → H∗(U(P, r)) are iso-
morphisms.

The explicit construction of j is as follows. Each vertex in C(P, r) is sent to
the center of the corresponding ball. The map is then extended to every simplex by
mapping it to the convex hull of the points its vertices are mapped to. Each sim-
plex is a convex set and it is straightforward to check that in Euclidean space, the
image of each simplex lies within the union of balls U(P, r). This way for every
k-simplex σ ∈ C(P, r) we can define its volume Volk(σ ) to be the k-dimensional
Lebesgue measure of j (σ ) ⊂R

d .
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With the volume of a simplex defined, we can now define the volume of a
chain. If γ ∈ Ck(C(P, r)) is a k-chain of the form γ = ∑

i αiσi (αi ∈ {0,1}), then
Volk(γ ) := ∑

i αi Volk(σi). In other words, the volume of a chain is defined to be
the sum of the volumes of the simplexes it contains.

To prove Lemma 4.1, we will be using an isoperimetric inequality related to
singular cycles in U(P, r) (see Theorem 6.2), rather than work directly with the
simplicial cycles. To try to avoid confusion, we will use γ to refer to simplicial
cycles, and η for singular cycles. Recall that a singular k-simplex in R

d is a actu-
ally map σ : �k → R

d , where �k is the standard k-simplex. For brevity, we will
identify every singular simplex σ with its image Im(σ ) ⊂ R

d , and every k-chain
η = ∑

i αiσi with the union
⋃

i:αi �=0 Im(σi) ⊂ R
d . We will also need to define the

volume of a singular k-chain. Such a definition exists (cf. [32]); however, we will
be looking only at chains that are of the form η = j (γ ) where γ is a simplicial
k-chain in C(P, r), and for those we can simply define Volk(η) := Volk(γ ).

Next, we define the filling radius of a singular k-cycle. Intuitively, the filling
radius of a cycle measures how much we need to “inflate” the cycle to get it filled
in (so it becomes trivial). Formally, we have the following.

DEFINITION 6.1. Let η be a compactly supported singular cycle in U(P, r).
A filling of η is a (k + 1)-chain in R

d such that ∂	 = η. The filling radius Rfill(η)

is defined as

Rfill(η) = inf
{
ρ > 0 : ∃	 such that η = ∂	 and 	 ⊂ U(η, ρ)

}
.

In other words, Rfill(η) is the smallest ρ such that the “ρ-thickening” of η contains
some filling 	.

The workhorse of our proof of Lemma 4.1 is the following general isoperimetric
inequality due to Federer and Fleming [32]. For a proof, see either the original ar-
ticle or Section 3 of Guth’s expository notes on Gromov’s systolic inequality [34].

THEOREM 6.2 (Volume to filling radius, isoperimetric inequality). Let η be a
singular k-cycle, such that Volk(η) = V . Then the filling radius of η satisfies

Rfill(η) ≤ CV 1/k,

for some constant C (depending on k, d).

Recall that as in Definition 6.1, η is a k-cycle in U(P, r). However, it is worth
noting that for any k-cycle γ ∈ C(P, r), there is a canonical inclusion into U(P, r).
This is the geometric realization of η (although it need not be embedded). Hence,
this result also holds for cycles in the Čech complex.

To prove Lemma 4.1, we will thus need to take two steps: (1) bound the volume
of a cycle η, and (2) bound death time of η using the filling radius Rfill(η). We start
with the following definition.



2050 O. BOBROWSKI, M. KAHLE AND P. SKRABA

DEFINITION 6.3. Let X be a set in R
d . For ε > 0 the set S is called an ε-net

of X if:

(1) S ⊆ X,
(2) X ⊂ U(S, ε), that is, X is covered by the balls of radius ε around S, and
(3) for every p1,p2 ∈ S, ‖p1 − p2‖ ≥ ε.

In other words, an ε-net is both an ε-cover and an ε-packing.

ε-nets are a standard construction in computational geometry and exist for any
metric space [24]. They can be constructed incrementally using the following al-
gorithm: (1) Initialize S to be the empty set. (2) Select any uncovered point in X

and add it to S. (3) Mark all points of distance less than ε from the selected point
as covered. (4) Repeat 2–3 until there are no uncovered points.

Next, let P = {x1, x2, . . . , xm} ⊂ R
d and let S ⊂ P be an ε-net of P . By the

definition of ε-nets, the following holds:

P ⊂ U(S, ε),(6.1)

‖pi − pj‖ ≥ ε ∀pi,pj ∈ S.(6.2)

Using (6.1) and the triangle inequality, we also have

(6.3) U(P, ε) ⊂ U(S,2ε) ⊂ U(P,2ε).

We will use the intermediate construction U(S,2ε) to bound the volume of cy-
cles. In particular, we will need the following lemma. We use [·] to denote the
equivalence class in homology of a corresponding cycle.

LEMMA 6.4. Let P and S be as defined above, and let γ be a k-cycle in
C(S,2ε). Then Volk(γ ) ≤ C5mεk , where C5 depends only on k, d . Consequently,
for every (singular) cycle η in U(S,2ε) there exists a homologous cycle η′ such
that [η] = [η′] and such that Volk(η′) ≤ C5mεk .

PROOF. The k-dimensional volume of γ is the sum of the k-volumes of the
simplexes in γ . This can be bounded by the maximal volume induced by any one
simplex multiplied by the number of simplexes in γ .

To bound the number of simplexes, first observe that γ is supported on S. By
(6.2), every pair of vertices p1,p2 ∈ S are at distance ‖p1 − p2‖ ≥ ε. So the balls
centered at points in S of radius ε/2 are disjoint. This implies, by a sphere packing
bound, that every vertex in S has only a bounded number of neighboring vertices
in C(S,2ε), namely the maximum number of disjoint balls of radius ε/2 that can
fit in a ball of radius 4ε. This sphere packing number is clearly bounded above
by 8d , the ratio of the volumes of these spheres. This implies that every vertex is

contained in at most
(8d

k

)
k-dimensional faces and since by assumption there are
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at most m vertices in P and hence S, there are at most m
(8d

k

)
k-dimensional faces

total.
To bound the maximal volume of the single simplexes, observe that the longest

edge in any simplex of γ has length at most 4ε. Therefore, for every simplex σ in
γ we have Volk(σ ) ≤ (4ε)k (the volume of a cube of side 4ε).

To conclude, we have shown that γ has at most m
(8d

k

)
simplexes, the volume

of each of them is bounded by (4ε)k . Therefore, Volk(γ ) ≤ C5mεk where C5 =
4k

(8d

k

)
.

Next, let η be a cycle in U(S,2ε). Since the map j∗ : H∗(C(S,2ε)) →
H∗(U(S,2ε)) is an isomorphism, we can look at the homology class j−1∗ ([η]),
and take a representative cycle γ . Defining η′ = j (γ ) then [η′] = j∗ ◦ j−1∗ ([η]) =
[η], so η and η′ are homologous. In addition, since γ is a cycle in C(S,2ε)

and η′ = j (γ ), we have that Volk(η′) = Volk(γ ) ≤ C5mεk . That completes the
proof. �

For the next lemma, consider the following sequence of maps in homology (in-
duced by inclusion maps):

Hk

(
U(P, ε)

) i∗−→ Hk

(
U(S,2ε)

) i∗−→ Hk

(
U(P,2ε)

)
.

LEMMA 6.5. Vertices to volume] Let P = {x1, x2, . . . , xm} ⊂ R
d . Suppose

that η is an arbitrary k-cycle in U(P, ε), and let i ◦ i(η) be its image in U(P,2ε).
Then there exists a k-cycle η′ in U(P,2ε), homologous to i ◦ i(η), such that
Volk(η′) ≤ C5mεk for some constant C5 > 0 depending only on k and d .

PROOF. Let i(η) be the inclusion of η into U(S,2ε). From Lemma 6.4, we
have that there exists a cycle η′′ in U(S,2ε) such that [η′′] = [i(η)] and such that
Volk(η′′) ≤ C5mεk . Defining η′ = i(η′′), then [η′] = i∗([η′′]) = i∗([i(η)]) = [i ◦
i(η)], and since the inclusion does not change the volume we have Volk(η′) =
Volk(η′′) ≤ C5mεk . That completes the proof. �

Finally, we relate the filling radius to the persistence of the cycles.

LEMMA 6.6 (Filling radius to persistence). If η is a cycle in U(P, r), with a
filling radius Rfill(η) = R, then ηdeath ≤ R + r .

PROOF. Since η is a cycle in U(P, r), then by the triangle inequality we have
that U(η,R) ⊂ U(P, r +R). By the definition of Rfill (see Definition 6.3), this im-
plies that there exists a (k+1) cycle 	 in U(P,R+r) such that η = ∂	. Therefore,
in U(P,R + r) the cycle η is already trivial which implies that ηdeath ≤ R + r . �

We are now ready to prove Lemma 4.1.
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PROOF OF LEMMA 4.1. Let γ ∈ PHk(n) with γbirth = r . Suppose that the sim-
plexes constructing γ are contained in a connected component with m vertices of
C(n, r) = C(Pn, r). Let P ⊂Pn be the set of vertices in this connected component,
then necessarily γ is also a cycle in C(P, r).

Next, take the corresponding cycle η = j (γ ) in U(P, r). According to
Lemma 6.5, there exists a cycle η′ in U(P,2r), homologous to i ◦ i(η), such
that Volk(η′) ≤ C5mrk , and from Theorem 6.2 this implies that Rfill(η

′) ≤
C(C5mrk)1/k = C′m1/kr . Using Lemma 6.6, we then have that η′

death ≤
r(C′m1/k + 2). Since η′ and i ◦ i(η) are homologous, then η and η′ share the
same death time, which in turn implies that γ and η′ share the same death time.
Therefore, π(γ ) ≤ C′m1/k + 2 ≤ C′′m1/k . In other words, if π(γ ) = p then we
have that pk ≤ m(C′′)k . Taking C1 = 1/(C′′)k completes the proof. �

6.2. Proof of Lemma 5.1. We first restate the lemma.

LEMMA 5.1. Suppose that for every 1 ≤ j ≤ m we have |Si,j ∩Pn| = 1, and
|Qi ∩Pn| = m. Then there exists γ ∈ PHk(n) with π(γ ) ≥ 1

4
√

d
× L

�
.

PROOF. Let r1 = √
d� and r2 = L/4. The assumptions that |Si,j ∩Pn| = 1 for

every 1 ≤ i ≤ m and |Qi ∩Pn| = m assure that:

• For every r ≥ r1 the set U(Pn ∩ Qi, r) is connected and covers Si .
• For every r ≤ r2 the sets U(Pn ∩ Qi, r) and U(Pn\Qi, r) are disjoint.

In other words, for every r ∈ [r1, r2] the set U(Pn ∩ Qi, r) is a connected compo-
nent of U(n, r). We will show that this component contains the desired cycle.

Defining S
(r)
i = U(Si, r), for every r ∈ [r1, r2] we have

Si ⊂ U(Pn ∩ Qi, r) ⊂ S
(r)
i .

In addition, for every r ∈ [r1, r2], the inclusion Si ↪→ S
(r)
i is a homotopy equiv-

alence and both spaces are homotopy equivalent to a k-dimensional sphere, and
in particular have a nontrivial k-cycle. A standard argument in algebraic topol-
ogy (using the induced maps in homology) yields that U(Pn ∩ Qi, r) must have a
nontrivial k-cycle as well. Intuitively, since the k-cycle in Si “survives” the inclu-
sion into S

(r)
i , it must also be present in the intermediate set U(Pn ∩ Qi, r). Now

consider the following sequence induced by the inclusion maps

Hk(Si)
i∗−→ Hk

(
U(Pn ∩ Qi, r1)

) i∗−→ Hk

(
U(Pn ∩ Qi, r2)

) i∗−→ Hk

(
S

(r2)
i

)
.

Let η be a nontrivial cycle in Si , then i∗ ◦ i∗ ◦ i∗([η]) �= 0 since by assumption
i∗ ◦ i∗ ◦ i∗(η) is a nontrivial cycle in S

(r2)
i as well. Consequently, we must have

i∗([η]) �= 0 and i∗ ◦ i∗([η]) �= 0. Next, define γ = h ◦ i(η)—a cycle in C(Pn, r1),
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then γ is nontrivial and so does i(γ ) in C(Pn, r2). Therefore, γbirth ≤ r1 and
γdeath ≥ r2, and then

π(γ ) = γdeath

γbirth
≥ r2

r1
= 1

4
√

d
× L

�
,

this completes the proof. �

6.3. Proof of Theorem 3.1 for the Vietoris–rips filtration.

PROOF. Let r2 > 2r1, and consider the following sequences of maps induced
by the inclusions in (2.2):

Hk

(
C(n, r1)

) i∗−→ Hk

(
R(n, r1)

) i∗−→ Hk

(
R(n, r2/2)

) i∗−→ Hk

(
C(n, r2)

)
.

Suppose there exists a cycle γ in C(n, r1) with γdeath ≥ r2. Then necessarily i∗ ◦ i∗ ◦
i∗([γ ]) �= 0, which implies that both i∗([γ ]) �= 0 and i∗ ◦ i∗([γ ]) �= 0. Therefore,
there exists a nontrivial cycle γ ′ = i(γ ) in R(n, r1) such that γ ′

death ≥ r2/2, and
consequently π(γ ′) ≥ r2/2r1. Thus,

(6.4) P
(
�C

k (n) ≥ Ak�k(n)
) ≤ P

(
�R

k (n) ≥ Ak�k(n)/2
)
.

On the other hand, we can look at the following sequence for r2 > 2r1:

Hk

(
R(n, r1)

) i∗−→ Hk

(
C(n,2r1)

) i∗−→ Hk

(
C(n, r2)

) i∗−→ Hk

(
R(n, r2)

)
.

Suppose that there exists a cycle γ in the Rips filtration with γbirth ≤ r1 and γdeath ≥
r2. Then there exists a cycle γ ′ in the Čech filtration with γ ′

birth ≤ 2r1 and γ ′
death ≥

r2, and therefore, π(γ ′) ≥ r2/2r1. Thus,

(6.5) P
(
�C

k (n) ≤ Bk�k(n)
) ≤ P

(
�R

k (n) ≤ 2Bk�k(n)
)
.

To conclude, we have that

P

(
Ak ≤ �C

k (n)

�k(n)
≤ Bk

)
≤ P

(
Ak/2 ≤ �R

k (n)

�k(n)
≤ 2Bk

)
.

Since the left-hand side converges to 1, so does the right-hand side, which com-
pletes the proof. �

7. Numerical experiments. In this section, we present numerical simulations
demonstrating the behavior of �k(n) for the Čech complex in dimensions d =
2,3 and 4. The experiments were run by generating a Poisson process with rate n

in the unit cube of the appropriate dimension. To generate randomness, we used the
standard implementation of the Mersenne Twister [53]. The persistence diagram
computation was done using the PHAT library [5].

For each sample, the Čech complex is built until the point of coverage (or very
near coverage), since past coverage the complex is contractible and there are no
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changes in homology. In dimensions 2 and 3, instead of the Čech filrtration, we
use the α-shape filtration [28] which is based on the Delaunay triangulation. To
compute the triangulations, we used the CGAL library [47]. The key benefit of
this construction is that the simplicial complex is of a smaller size, for example, in
2 dimensions the size of the Delaunay triangulation is at most quadratic in the
number of points. The persistence diagram are the same since for any parameter r ,
the α-complex and Čech complex are homotopy equivalent (see [27]), giving rise
to isomorphic homology groups.

The results are shown in Figure 5. The number of points was varied from 100 to
1,000,000 (in higher dimensions, this was reduced due to computational complex-

FIG. 5. Plots of maximum persistence for the Čech filtration, against the proper scaling term
�k(n). We tested different dimensions for the homology and for the ambient space. (A) H1 in R

2,
(B) H1 in R

3, (C) H2 in R
3 (D) H2 in R

4. Each point is the result of a different trial, and the red
line represents the best linear fit. For (A), (B) and (C) the range of points is n = 102 to 106. For
(D), the range is roughly n = 102 to 104. The reduced range is a consequence of computational
considerations—the number of simplices grows quickly as the dimension increases.
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FIG. 6. Histograms of empirical �1(n) in 2D normalized by logn
log logn

for (A) 400 points (B) 2000

points (C) 2 × 106 points.

ity). We tested the behavior of �k(n) for a few values of k, and d (the ambient di-
mension). For d = 2, the only interesting case is k = 1, namely H1 (A). The result-
ing plot shows the maximal persistence �1(n) against �1(n) = logn/ log logn.
For each value of n, we repeated the experiment several times. Here, we also plot
the best linear fit with the constant 0.88. We also show the results for H1 when
d = 3 (B), H2 when d = 3 (C), and H2 when d = 4 (D). We note that we per-
formed a the same tests for the Rips filtration and the results were the same (but
with different slopes).

There are two particularities in these plots—the first is that the spread is large
for any one value of n. While it follows the straight line well, it does not seem to
converge to a single value. However, the resulting distributions do seem to con-
verge, albeit slowly, as can be seen in Figure 6. The histograms (A), (B) and (C)
present the resulting ratio for 400, 2000 and 2,000,000 points, respectively. While
there is a deviation, the distribution does become more concentrated around its
peak.

The second issue is is that at smaller n, the maximum value drops off faster than
linearly. This can be seen particularly in of Figure 5(B). This phenomenon could
be explained by saying that n is simply not large enough for the limiting behavior
to apply. Nevertheless, we tried to investigate this issue further, by considering the
Čech complex on the flat torus (T2) by identifying the edges of the unit square.
This part was computed using the periodic triangulations provided in CGAL [47].
We generated points in the unit square and then computed the maximal persistence
using the Euclidean metric (e.g., the standard case) and using the metric on the
flat torus. This was repeated 100 times for each value of n. We computed the mean
and standard deviation for each value and show the results in Figure 7. The red line
shows the mean for the unit square. The red shaded region showing the interval of
the mean +/− the standard deviation. The blue line (and the blue region) are the
mean (and standard deviation) for the maximal persistence on the flat torus. The
purple region is region where the blue and red regions overlap. As can be seen, for
most n the maximal persistence is identical, indicated that the longest lived cycles
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FIG. 7. The effect of boundaries is larger for a small number of points. The plot shows the mean
maximum persistence for H1 as a function of logn/ log logn with the shaded region showing interval
corresponding to +/− the standard deviation. The red line (and the red shaded region) shows the
maximum persistence in the unit square, while the blue line shows the maximum persistence for the
same point set in the flat torus. The purple region shows that for most values of n, the value of
maximal persistence is the same in both cases. This is illustrated by an equal mean as well as the
overlapping shaded regions (shown as purple). In (A), we see the plot up to several thousand points,
while in (B) we show a close-up for small values of n, where the results differ.

did not occur near the boundary. The difference is only visible for small values
of n (where there are only a few points). At low values of n, the results on the
torus demonstrate a more linear behavior. This provides strong evidence that the
nonlinearity is due to boundary effects.

For the case of the flat torus, there are two essential one-dimensional homology
classes (cycles with infinite persistence) corresponding to the generators of the
torus. For the above results, we ignore the essential classes.

8. Conclusion. In this paper, we examined the maximum persistence of cy-
cles in the persistent homology of either the random Čech or Rips complexes,
generated by a homogeneous Poisson process in the unit cube. We showed that
with a high probability we have �k(n) ∼ (

logn
log logn

)1/k . This paper proves that up-
per and lower bounds exist, and it remains future work to prove stronger limiting
theorems such as a law of large numbers or a central limit theorem for �k(n).

We note that while we focused on the Poisson process on the cube for simplicity,
similar results can be proved with minor adjustments for nonhomogeneous Poisson
processes as well, and for many compact spaces other than the cube (e.g., compact
Riemannian manifolds). The scale of the maximum persistence should be the same
(�k(n)), but the exact constants will be different. An important observation in
this case is that �k(n) should be defined as the maximum persistence among all
the “small” cycles, that is, ignoring the cycles that belong to the homology of the
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underlying space. Recall that these small cycles are considered the noise in various
TDA applications. Thus, revealing their distribution would be an important first
step in performing noise filtering or reduction. At this point, we would like to offer
the following insight related to the “signal to noise ratio” (SNR), in this kind of
topological inference problems.

Suppose that the samples are generated from a distribution on a compact man-
ifold M, and our interest is in recovering its homology Hk(M). The cycles that
belong to the homology of M will show up in the Čech complex at some radius,
and we can denote by �M

k (n) the minimal persistence of these cycles (in the Čech
filtration). One question we might ask is—how do the signal and the noise com-
pare? In other words—what can we say about �M

k (n)/�k(n)?
The analysis we have so far already offers a preliminary answer to this ques-

tion. For every cycle γ that belongs to the homology of M, we know two things:
(a) γdeath is approximately constant (depending on the geometry of M), and (b)
γbirth ≤ C(

logn
n

)1/d (since there are no more changes in homology past coverage,
see Theorem 4.9 in [9]). Therefore, we can conclude that

�M
k (n) ≥ C′

(
n

logn

)1/d

.

Combining this bound with our bound for �k(n), we have, for example, that for
any ε > 0,

�M
k (n)

�k(n)
≥ n1/d−ε.

To get a better estimate for this ratio, we will need to refine our results for �k(n),
as well as to make more precise statements about the birth times of cycles that
belong to M (instead of using a crude upper bound).

To conclude, we believe that the results in this paper are a promising lead in the
direction of noise filtering for topological inference, and will be very useful for
future analysis of probabilistic models in TDA.
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