Abstract
We show that generic Hölder continuous functions are ρ-irregular. The property of ρ-irregularity has been first introduced by Catellier and Gubinelli (Stochastic Process. Appl. 126 (2016) 2323–2366) and plays a key role in the study of well-posedness for some classes of perturbed ODEs and PDEs. Genericity here is understood in the sense of prevalence. As a consequence we obtain several results on regularisation by noise “without probability”, i.e. without committing to specific assumptions on the statistical properties of the perturbations. We also establish useful criteria for stochastic processes to be ρ-irregular and study in detail the geometric and analytic properties of ρ-irregular functions.
On montre que génériquement les fonctions Höldériennes sont ρ-irrégulières. La propriété de ρ-irrégularité a été introduite par Catellier et Gubinelli (Stochastic Process. Appl. 126 (2016) 2323–2366) et elle joue un rôle important dans l’étude du caractère bien posé de certaines équations différentielles ordinaires et aux dérivées partielles perturbées. La généricité ici est à entendre dans le sens de la prévalence. Par conséquent, on obtient des résultats de régularisation par bruit « sans probabilité », c’est-à-dire, sans utiliser d’hypothèses spécifiques sur la nature aléatoire des perturbations. Nous établissons également des critères utiles pour que les processus stochastiques soient ρ-irréguliers et nous étudions en détail les propriétés géométriques et analytiques des fonctions ρ-irrégulières.
Funding Statement
Both authors were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Hausdorff Center for Mathematics under Germany’s Excellence Strategy – EXC-2047/1 – 390685813 and through CRC 1060 – projekt number 211504053. The first author is also supported by by the SNSF Grant 182565 and by the Swiss State Secretariat for Education, Research and Innovation (SERI) under Contract Number M822.00034.
Acknowledgments
The authors would like to thank Nicolas Perkowski and Leonardo Tolomeo for useful discussions, leading respectively to Lemma 2.23 and Remark 2.24; we are also grateful to the anonymous referee for their very carefully reading and numerous insights, which highly improved the paper.
Citation
Lucio Galeati. Massimiliano Gubinelli. "Prevalence of ρ-irregularity and related properties." Ann. Inst. H. Poincaré Probab. Statist. 60 (4) 2415 - 2467, November 2024. https://doi.org/10.1214/23-AIHP1399
Information