November 2024 Effect of small noise on the speed of reaction-diffusion equations with non-Lipschitz drift
Clayton Barnes, Leonid Mytnik, Zhenyao Sun
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 60(4): 2382-2414 (November 2024). DOI: 10.1214/23-AIHP1393

Abstract

We consider the [0,1]-valued solution (ut,x:t0,xR) to the one dimensional stochastic reaction diffusion equation with Wright-Fisher noise tu=x2u+f(u)+ϵu(1u)W˙. Here, W is a space-time white noise, ϵ>0 is the noise strength, and f is a continuous function on [0,1] satisfying supz[0,1]|f(z)|/z(1z)<. We assume the initial data satisfies 1u0,x=u0,x=0 for x large enough. Recently, it was proved in (Comm. Math. Phys. 384 (2021) 699–732) that the front of ut propagates with a finite deterministic speed Vf,ϵ, and under slightly stronger conditions on f, the asymptotic behavior of Vf,ϵ was derived as the noise strength ϵ approaches . In this paper we complement the above result by obtaining the asymptotic behavior of Vf,ϵ as the noise strength ϵ approaches 0: for a given p[1/2,1), if f(z) is non-negative and is comparable to zp for sufficiently small z, then Vf,ϵ is comparable to ϵ21p1+p for sufficiently small ϵ.

Nous considérons la solution (ut,x:t0,xR) à valeur dans l’intervalle [0,1] de l’équation stochastique de réaction-diffusion unidimensionnelle avec un bruit de Wright-Fisher tu=x2u+f(u)+ϵu(1u)W˙. Où W est un bruit blanc en espace et en temps, ϵ>0 est l’intensité du bruit et f est une fonction continue sur [0,1] telle que supz[0,1]|f(z)|/z(1z)<. Nous supposons que la condition initiale satisfait 1u0,x=u0,x=0 pour x suffisamment grand. Il a été récemment prouvé dans (Comm. Math. Phys. 384 (2021) 699–732) que le front de ut se propage à une vitesse Vf,ϵ déterministe finie et, sous des conditions légèrement plus fortes pour f, le comportement asymptotique de Vf,ϵ est entièrement déterminé par l’intensité du bruit ϵ lorsqu’il tend vers l’infini. Dans cet article, nous complétons ces résultats en décrivant le comportement asymptotique de Vf,ϵ lorsque ϵ tend vers 0 : pour p[1/2,1), si f(z) est positif et se comporte comme zp pour z suffisamment petit, alors Vf,ϵ est équivalent à ϵ21p1+p quand ϵ est suffisamment petit.

Funding Statement

The work of the authors was supported in part by ISF grants No. 1704/18 and No. 1985/22. The first author is a Zuckerman Postdoctoral Scholar, and this work was supported in part by the Zuckerman STEM Leadership Program. Most of this research was done while the third author was a Postdoc at the Technion – Israel Institute of Technology, supported in part by a fellowship of the Israel Council for Higher Education.

Acknowledgments

We thank Eyal Neuman, Zenghu Li and Hugo Panzo for very helpful conversations. We are grateful to Lenya Ryzhik for generously sharing his deep understanding of various aspects of the FKPP equations. We also thank the referees for the helpful comments and suggestions.

Citation

Download Citation

Clayton Barnes. Leonid Mytnik. Zhenyao Sun. "Effect of small noise on the speed of reaction-diffusion equations with non-Lipschitz drift." Ann. Inst. H. Poincaré Probab. Statist. 60 (4) 2382 - 2414, November 2024. https://doi.org/10.1214/23-AIHP1393

Information

Received: 10 July 2022; Revised: 20 March 2023; Accepted: 7 April 2023; Published: November 2024
First available in Project Euclid: 19 November 2024

MathSciNet: MR4828440
Digital Object Identifier: 10.1214/23-AIHP1393

Subjects:
Primary: 60H15
Secondary: 35K05 , 35R60

Keywords: Reaction-diffusion equations , Stochastic partial differential equations , Traveling waves , White noise

Rights: Copyright © 2024 Association des Publications de l’Institut Henri Poincaré

Vol.60 • No. 4 • November 2024
Back to Top