Abstract
We consider the -valued solution to the one dimensional stochastic reaction diffusion equation with Wright-Fisher noise . Here, W is a space-time white noise, is the noise strength, and f is a continuous function on satisfying . We assume the initial data satisfies for x large enough. Recently, it was proved in (Comm. Math. Phys. 384 (2021) 699–732) that the front of propagates with a finite deterministic speed , and under slightly stronger conditions on f, the asymptotic behavior of was derived as the noise strength ϵ approaches ∞. In this paper we complement the above result by obtaining the asymptotic behavior of as the noise strength ϵ approaches 0: for a given , if is non-negative and is comparable to for sufficiently small z, then is comparable to for sufficiently small ϵ.
Nous considérons la solution à valeur dans l’intervalle de l’équation stochastique de réaction-diffusion unidimensionnelle avec un bruit de Wright-Fisher . Où W est un bruit blanc en espace et en temps, est l’intensité du bruit et f est une fonction continue sur telle que . Nous supposons que la condition initiale satisfait pour x suffisamment grand. Il a été récemment prouvé dans (Comm. Math. Phys. 384 (2021) 699–732) que le front de se propage à une vitesse déterministe finie et, sous des conditions légèrement plus fortes pour f, le comportement asymptotique de est entièrement déterminé par l’intensité du bruit ϵ lorsqu’il tend vers l’infini. Dans cet article, nous complétons ces résultats en décrivant le comportement asymptotique de lorsque ϵ tend vers 0 : pour , si est positif et se comporte comme pour z suffisamment petit, alors est équivalent à quand ϵ est suffisamment petit.
Funding Statement
The work of the authors was supported in part by ISF grants No. 1704/18 and No. 1985/22. The first author is a Zuckerman Postdoctoral Scholar, and this work was supported in part by the Zuckerman STEM Leadership Program. Most of this research was done while the third author was a Postdoc at the Technion – Israel Institute of Technology, supported in part by a fellowship of the Israel Council for Higher Education.
Acknowledgments
We thank Eyal Neuman, Zenghu Li and Hugo Panzo for very helpful conversations. We are grateful to Lenya Ryzhik for generously sharing his deep understanding of various aspects of the FKPP equations. We also thank the referees for the helpful comments and suggestions.
Citation
Clayton Barnes. Leonid Mytnik. Zhenyao Sun. "Effect of small noise on the speed of reaction-diffusion equations with non-Lipschitz drift." Ann. Inst. H. Poincaré Probab. Statist. 60 (4) 2382 - 2414, November 2024. https://doi.org/10.1214/23-AIHP1393
Information