November 2024 When is the convex hull of a Lévy path smooth?
Jorge González Cázares, David Kramer-Bang, Aleksandar Mijatović
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 60(4): 2352-2381 (November 2024). DOI: 10.1214/23-AIHP1404

Abstract

We characterise, in terms of their transition laws, the class of one-dimensional Lévy processes whose graph has a continuously differentiable (planar) convex hull. We show that this phenomenon is exhibited by a broad class of infinite variation Lévy processes and depends subtly on the behaviour of the Lévy measure at zero. We introduce a class of strongly eroded Lévy processes, whose Dini derivatives vanish at every local minimum of the trajectory for all perturbations with a linear drift, and prove that these are precisely the processes with smooth convex hulls. We study how the smoothness of the convex hull can break and construct examples exhibiting a variety of smooth/non-smooth behaviours. Finally, we conjecture that an infinite variation Lévy process is either strongly eroded or abrupt, a claim implied by Vigon’s point-hitting conjecture. In the finite variation case, we characterise the points of smoothness of the hull in terms of the Lévy measure.

Nous caractérisons, en fonction de leurs lois de transition, la classe des processus de Lévy unidimensionnels dont le graphe a une enveloppe convexe (planaire) continûment dérivable. Nous montrons que ce phénomène est présent pour une large classe de processus de Lévy à variation infinie et dépend subtilement du comportement de la mesure de Lévy au voisinage de zéro. Nous introduisons une classe de processus de Lévy fortement érodés, dont les dérivées de Dini s’annulent à chaque minimum local de la trajectoire pour toutes les perturbations à dérive linéaire, et prouvons que ce sont précisément les processus à enveloppes convexes lisses. Nous étudions comment la régularité de l’enveloppe convexe peut cesser et construisons des exemples présentant une variété de comportements lisses/non lisses. Enfin, nous conjecturons qu’un processus de Lévy à variation infinie est soit fortement érodé, soit abrupt, une assertion impliquée par la conjecture point-hitting de Vigon. Dans le cas de la variation finie, nous caractérisons les points lisses de l’enveloppe en fonction de la mesure de Lévy.

Funding Statement

JGC and AM are supported by EPSRC grant EP/V009478/1 and The Alan Turing Institute under the EPSRC grant EP/N510129/1; AM was supported by the Turing Fellowship funded by the Programme on Data-Centric Engineering of Lloyd’s Register Foundation; DB is funded by the CDT in Mathematics and Statistics at The University of Warwick.

Acknowledgments

All three authors would like to thank the Isaac Newton Institute for Mathematical Sciences in Cambridge, supported by EPSRC grant EP/R014604/1, for hospitality during the programme on Fractional Differential Equations where part of this work was undertaken.

Citation

Download Citation

Jorge González Cázares. David Kramer-Bang. Aleksandar Mijatović. "When is the convex hull of a Lévy path smooth?." Ann. Inst. H. Poincaré Probab. Statist. 60 (4) 2352 - 2381, November 2024. https://doi.org/10.1214/23-AIHP1404

Information

Received: 2 July 2022; Revised: 2 February 2023; Accepted: 4 May 2023; Published: November 2024
First available in Project Euclid: 19 November 2024

MathSciNet: MR4828847
Digital Object Identifier: 10.1214/23-AIHP1404

Subjects:
Primary: 60G51

Keywords: Convex hull , Lévy process , Smoothness of convex minorant

Rights: Copyright © 2024 Association des Publications de l’Institut Henri Poincaré

Vol.60 • No. 4 • November 2024
Back to Top