November 2024 A bilinear flory equation
Daniel Heydecker, Robert I. A. Patterson
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 60(4): 2508-2548 (November 2024). DOI: 10.1214/23-AIHP1409

Abstract

We consider coagulation equations of Flory type where particles are represented by finite dimensional vectors and the coagulation rate between two particles of types x and y is given by a bilinear form y·Ax, generalising the multiplicative kernel. For these coagulation rates, a gelation transition occurs at a finite time tg(0,), which can be given exactly in terms of an eigenvalue problem in finite dimensions. We prove a hydrodynamic limit for the corresponding stochastic coagulant, including the phase transition for the largest particle, and exploit a coupling to random graphs to extend analysis of the limiting process beyond the gelation time.

On considère des équations de coagulation de type Flory où les particules sont représentées par des vecteurs de dimension finie et le taux de coagulation entre deux particules de types x et y est donné par une forme bilinéaire y·Ax, généralisant le noyau multiplicatif. Pour ces taux de coagulation, une transition de gélification se produit à un temps fini tg(0,), qui peut être donné exactement en termes d’un problème aux valeurs propres en dimensions finies. Nous prouvons une limite hydrodynamique pour le coagulant stochastique correspondant, y compris la transition de phase pour la plus grande particule, et exploitons un couplage avec des graphes aléatoires pour étendre l’analyse du processus limite au-delà du temps de gélification.

Funding Statement

The first author was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/L016516/1 for the University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis. The second author acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – MATH+: The Berlin Mathematics Research Center (EXC-2046/1), project ID: 390685689 (subproject EF4-10).

Acknowledgements

The authors are grateful to the associate editor and the anonymous referee for their comments regarding the presentation of our work.

Citation

Download Citation

Daniel Heydecker. Robert I. A. Patterson. "A bilinear flory equation." Ann. Inst. H. Poincaré Probab. Statist. 60 (4) 2508 - 2548, November 2024. https://doi.org/10.1214/23-AIHP1409

Information

Received: 18 August 2020; Revised: 8 July 2022; Accepted: 30 May 2023; Published: November 2024
First available in Project Euclid: 19 November 2024

MathSciNet: MR4828850
Digital Object Identifier: 10.1214/23-AIHP1409

Subjects:
Primary: 60K35
Secondary: 82B40

Keywords: coagulation equation , Flory Equation , Random graphs , Stochastic Particle System

Rights: Copyright © 2024 Association des Publications de l’Institut Henri Poincaré

Vol.60 • No. 4 • November 2024
Back to Top