August 2023 McKean SDEs with singular coefficients
Elena Issoglio, Francesco Russo
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 59(3): 1530-1548 (August 2023). DOI: 10.1214/22-AIHP1293

Abstract

The paper investigates existence and uniqueness for a stochastic differential equation (SDE) depending on the law density of the solution, involving a Schwartz distribution. Those equations, known as McKean SDEs, are interpreted in the sense of a suitable singular martingale problem. A key tool used in the analysis is the corresponding Fokker–Planck equation.

Cet article explore existence et unicité pour une équation différentielle stochastique (EDS) dépendant de la loi de la solution, dont un coefficient contient une distribution de Schwartz. Ces équations sont connues sous le nom d’EDS de type McKean et sont interprétées à l’aide d’un problème de martingales approprié. Un outil fondamental de l’analyse est l’équation de Fokker–Planck correspondante.

Acknowledgements

The authors would like to thank the anonymous Referees for their stimulating comments.

Citation

Download Citation

Elena Issoglio. Francesco Russo. "McKean SDEs with singular coefficients." Ann. Inst. H. Poincaré Probab. Statist. 59 (3) 1530 - 1548, August 2023. https://doi.org/10.1214/22-AIHP1293

Information

Received: 9 August 2021; Revised: 26 June 2022; Accepted: 27 June 2022; Published: August 2023
First available in Project Euclid: 31 August 2023

MathSciNet: MR4635718
Digital Object Identifier: 10.1214/22-AIHP1293

Subjects:
Primary: 35C99 , 35D99 , 35K10 , 60H10 , 60H30

Keywords: distributional drift , Martingale problem , McKean , Stochastic differential equations

Rights: Copyright © 2023 Association des Publications de l’Institut Henri Poincaré

Vol.59 • No. 3 • August 2023
Back to Top