February 2022 An upper bound on the two-arms exponent for critical percolation on Zd
J. van den Berg, D. G. P. van Engelenburg
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 58(1): 1-6 (February 2022). DOI: 10.1214/21-AIHP1153

Abstract

Consider critical site percolation on Zd with d2. Cerf (Ann. Probab. 43 (2015) 2458–2480) pointed out that from classical work by Aizenman, Kesten and Newman (Comm. Math. Phys. 111 (1987) 505–532) and Gandolfi, Grimmett and Russo (Comm. Math. Phys. 114 (1988) 549–552) one can obtain that the two-arms exponent is at least 1/2. The paper by Cerf slightly improves that lower bound.

Except for d=2 and for high d, no upper bound for this exponent seems to be known in the literature so far (not even implicitly). We show that the distance-n two-arms probability is at least cn(d2+4d2) (with c>0 a constant which depends on d), thus giving an upper bound d2+4d2 for the above mentioned exponent.

Nous considérons la percolation critique par sites dans Zd pour d2. Cerf (Ann. Probab. 43 (2015) 2458–2480) a montré, en s’appuyant sur des travaux classiques dûs à Aizenman, Kesten et Newman (Comm. Math. Phys. 111 (1987) 505–532) et Gandolfi, Grimmett and Russo (Comm. Math. Phys. 114 (1988) 549–552), que l’exposant critique à deux-bras est au moins égal à 1/2. L’article de Cerf améliore cette borne inférieure.

Sauf dans le cas d=2 ou en grande dimension, il ne semble pas que la litérature contienne une borne supérieure pour cette exposant (même pas de manière implicite). Nous prouvons que la probabilité de “deux bras à distance n” est au moins cn(d2+4d2) (où c>0 est une constante qui peut dépendre de la dimension d). Ainsi, l’exposant mentionné est inférieur ou égal à d2+4d2.

Citation

Download Citation

J. van den Berg. D. G. P. van Engelenburg. "An upper bound on the two-arms exponent for critical percolation on Zd." Ann. Inst. H. Poincaré Probab. Statist. 58 (1) 1 - 6, February 2022. https://doi.org/10.1214/21-AIHP1153

Information

Received: 21 October 2020; Revised: 15 December 2020; Accepted: 1 February 2021; Published: February 2022
First available in Project Euclid: 2 February 2022

MathSciNet: MR4374669
zbMATH: 1493.60146
Digital Object Identifier: 10.1214/21-AIHP1153

Subjects:
Primary: 60K35
Secondary: 82B43

Keywords: Critical exponent , Critical percolation

Rights: Copyright © 2022 Association des Publications de l’Institut Henri Poincaré

Vol.58 • No. 1 • February 2022
Back to Top