Open Access
February 2020 The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics
Domenico Marinucci, Maurizia Rossi, Igor Wigman
Ann. Inst. H. Poincaré Probab. Statist. 56(1): 374-390 (February 2020). DOI: 10.1214/19-AIHP964

Abstract

We study the asymptotic behaviour of the nodal length of random $2d$-spherical harmonics $f_{\ell}$ of high degree $\ell\rightarrow\infty$, i.e. the length of their zero set $f_{\ell}^{-1}(0)$. It is found that the nodal lengths are asymptotically equivalent, in the $L^{2}$-sense, to the “sample trispectrum”, i.e., the integral of $H_{4}(f_{\ell}(x))$, the fourth-order Hermite polynomial of the values of $f_{\ell}$. A particular by-product of this is a Quantitative Central Limit Theorem (in Wasserstein distance) for the nodal length, in the high energy limit.

Nous étudions le comportement asymptotique de la longueur nodale de fonctions propres aléatoires $f_{\ell}$ du Laplacien sphérique pour valeurs propres très élevés $\ell\rightarrow+\infty$, c’est-à-dire la longueur de leur ensemble de niveau zéro $f_{\ell}^{-1}(0)$. Nous démontrons que la longueur nodale est asymptotiquement équivalente, au sens de $L^{2}$, au « sample trispectrum », c’est-à-dire l’intégral de $H_{4}(f_{\ell}(x))$, le polynôme de Hermite d’ordre quatre évalué en $f_{\ell}$. Une conséquence de ce résultat est un Théorème Central Limite quantitatif (dans le sens de la distance de Wasserstein) pour la longueur nodale, quand l’énergie tend vers l’infini.

Citation

Download Citation

Domenico Marinucci. Maurizia Rossi. Igor Wigman. "The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics." Ann. Inst. H. Poincaré Probab. Statist. 56 (1) 374 - 390, February 2020. https://doi.org/10.1214/19-AIHP964

Information

Received: 13 February 2018; Revised: 16 January 2019; Accepted: 30 January 2019; Published: February 2020
First available in Project Euclid: 3 February 2020

zbMATH: 07199308
MathSciNet: MR4058991
Digital Object Identifier: 10.1214/19-AIHP964

Subjects:
Primary: 33C55 , 42C10 , 53C65 , 60G60 , 62M15

Keywords: Berry’s cancellation , Nodal length , Quantitative Central Limit Theorem , Sample trispectrum , Spherical harmonics

Rights: Copyright © 2020 Institut Henri Poincaré

Vol.56 • No. 1 • February 2020
Back to Top