Open Access
February 2018 Quenched invariance principle for random walk in time-dependent balanced random environment
Jean-Dominique Deuschel, Xiaoqin Guo, Alejandro F. Ramírez
Ann. Inst. H. Poincaré Probab. Statist. 54(1): 363-384 (February 2018). DOI: 10.1214/16-AIHP807

Abstract

We prove a quenched central limit theorem for balanced random walks in time-dependent ergodic random environments which is not necessarily nearest-neighbor. We assume that the environment satisfies appropriate ergodicity and ellipticity conditions. The proof is based on the use of a maximum principle for parabolic difference operators.

Nous démontrons un théorème de loi limite centrale presque sûr pour des marches aléatoires équilibrées non nécessairement aux plus proches voisins, dans un milieu aléatoire ergodique. Nous supposons que l’environnement satisfait des conditions d’ergodicité et d’ellipicité appropriées. Notre preuve est basée sur un principe du maximum pour des opérateurs aux différences paraboliques.

Citation

Download Citation

Jean-Dominique Deuschel. Xiaoqin Guo. Alejandro F. Ramírez. "Quenched invariance principle for random walk in time-dependent balanced random environment." Ann. Inst. H. Poincaré Probab. Statist. 54 (1) 363 - 384, February 2018. https://doi.org/10.1214/16-AIHP807

Information

Received: 16 August 2016; Accepted: 15 November 2016; Published: February 2018
First available in Project Euclid: 19 February 2018

zbMATH: 06880058
MathSciNet: MR3765893
Digital Object Identifier: 10.1214/16-AIHP807

Subjects:
Primary: 35K10 , 60K37 , 82D30

Keywords: maximum principle , Quenched central limit theorem , Random walk in random environment

Rights: Copyright © 2018 Institut Henri Poincaré

Vol.54 • No. 1 • February 2018
Back to Top