Open Access
November 2017 Crossing probabilities for critical Bernoulli percolation on slabs
Deepan Basu, Artem Sapozhnikov
Ann. Inst. H. Poincaré Probab. Statist. 53(4): 1921-1933 (November 2017). DOI: 10.1214/16-AIHP776

Abstract

We prove that in the critical Bernoulli percolation on graphs $\mathbb{Z}^{2}\times\{0,\ldots,k-1\}^{d-2}$, for each $\rho>0$, the probability of open left-right crossing of rectangle $[0,\rho N]\times[0,N]\times[0,k-1]^{d-2}$ is uniformly positive.

On démontre que dans la percolation de Bernoulli critique sur le graphe $\mathbb{Z}^{2}\times\{0,\ldots,k-1\}^{d-2}$, pour chaque $\rho>0$, la probabilité d’avoir un passage de gauche à droite ouvert dans $[0,\rho N]\times[0,N]\times[0,k-1]^{d-2}$ est uniformément positive.

Citation

Download Citation

Deepan Basu. Artem Sapozhnikov. "Crossing probabilities for critical Bernoulli percolation on slabs." Ann. Inst. H. Poincaré Probab. Statist. 53 (4) 1921 - 1933, November 2017. https://doi.org/10.1214/16-AIHP776

Information

Received: 16 December 2015; Revised: 16 June 2016; Accepted: 28 June 2016; Published: November 2017
First available in Project Euclid: 27 November 2017

zbMATH: 06847067
MathSciNet: MR3729640
Digital Object Identifier: 10.1214/16-AIHP776

Subjects:
Primary: 60K35 , 82B43

Keywords: Critical Bernoulli percolation , Russo–Seymour–Welsh theorem , Slab

Rights: Copyright © 2017 Institut Henri Poincaré

Vol.53 • No. 4 • November 2017
Back to Top