Abstract
We show that a uniform quadrangulation, its largest $2$-connected block, and its largest simple block jointly converge to the same Brownian map in distribution for the Gromov–Hausdorff–Prokhorov topology. We start by deriving a local limit theorem for the asymptotics of maximal block sizes, extending the result in (Random Structures Algorithms 19 (2001) 194–246). The resulting diameter bounds for pendant submaps of random quadrangulations straightforwardly lead to Gromov–Hausdorff convergence. To extend the convergence to the Gromov–Hausdorff–Prokhorov topology, we show that exchangeable “uniformly asymptotically negligible” attachments of mass simply yield, in the limit, a deterministic scaling of the mass measure.
Nous montrons qu’une quadrangulation uniformément aléatoire, sa plus grande composante 2-connexe, et sa plus grande composante simple convergent conjointement en loi vers la même carte brownienne dans le sens Gromov–Hausdorff–Prokhorov. En premier, nous étendons l’analyse de (Random Structures Algorithms 19 (2001) 194–246) afin de démontrer un théorème limite local pour les tailles des plus grandes composantes. Les bornes sur les diamètres ainsi obtenues impliquent directement la convergence dans le sens Gromov–Hausdorff. Pour obtenir la convergence pour la topologie Gromov–Hausdorff–Prokhorov, nous prouvons que l’effet de l’attachement des masses sur l’objet limite est déterministe, si les masses sont attachées de manière échangeable et les masses sont uniformément asymptotiquement négligeables.
Citation
Louigi Addario-Berry. Yuting Wen. "Joint convergence of random quadrangulations and their cores." Ann. Inst. H. Poincaré Probab. Statist. 53 (4) 1890 - 1920, November 2017. https://doi.org/10.1214/16-AIHP775
Information