Abstract
Let D be an unbounded domain in ℝd with d≥3. We show that if D contains an unbounded uniform domain, then the symmetric reflecting Brownian motion (RBM) on ̅D is transient. Next assume that RBM X on ̅D is transient and let Y be its time change by Revuz measure 1D(x)m(x) dx for a strictly positive continuous integrable function m on ̅D. We further show that if there is some r>0 so that D∖̅B̅(̅0̅,̅ ̅r̅) is an unbounded uniform domain, then Y admits one and only one symmetric diffusion that genuinely extends it and admits no killings.
Notons D un domaine non borné dans ℝd avec d≥3. Nous montrons que si D contient un domaine uniforme non borné, alors le mouvement brownien réfléchi (RBM) sur ̅D est transient. Par ailleurs, supposons que le RBM X sur ̅D est transient et notons Y son changement de temps par une mesure de Revuz 1D(x)m(x) dx pour une fonction m strictement positive, continue et intégrable sur ̅D. Nous démontrons alors que si il existe un r>0 tel que D∖̅B̅(̅0̅,̅ ̅r̅) soit un domaine uniformément non borné, alors Y admet une unique extension en une diffusion symétrique qui n’est jamais tuée.
Citation
Zhen-Qing Chen. Masatoshi Fukushima. "On unique extension of time changed reflecting Brownian motions." Ann. Inst. H. Poincaré Probab. Statist. 45 (3) 864 - 875, August 2009. https://doi.org/10.1214/08-AIHP301
Information