Open Access
August 2009 Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes
Patie Pierre
Ann. Inst. H. Poincaré Probab. Statist. 45(3): 667-684 (August 2009). DOI: 10.1214/08-AIHP182
Abstract

We first characterize the increasing eigenfunctions associated to the following family of integro-differential operators, for any α, x>0, γ≥0 and f a smooth function on $\mathfrak{R}^{+}$, $$\mathbf{L}^{(\gamma)}f(x)=x^{-\alpha}\biggl(\frac{\sigma}{2}x^{2}f''(x)+(\sigma\gamma+b)xf'(x)+\int_{0}^{\infty}\bigl(f\bigl(\mathrm{e}^{-r}x\bigr)-f(x)\bigr)\mathrm{e}^{-r\gamma}+xf'(x)r{\mathbb{I}}_{\{r\leq1\}}\nu(\mathrm{d}r)\biggr),\qquad(0.1)$$ where the coefficients $b\in\mathfrak{R}$, σ≥0 and the measure ν, which satisfies the integrability condition 0(1∧r2)ν(dr)<+∞, are uniquely determined by the distribution of a spectrally negative, infinitely divisible random variable, with characteristic exponent ψ. L(γ) is known to be the infinitesimal generator of a positive α-self-similar Feller process, which has been introduced by Lamperti [Z. Wahrsch. Verw. Gebiete 22 (1972) 205–225]. The eigenfunctions are expressed in terms of a new family of power series which includes, for instance, the modified Bessel functions of the first kind and some generalizations of the Mittag-Leffler function. Then, we show that some specific combinations of these functions are Laplace transforms of self-decomposable or infinitely divisible distributions concentrated on the positive line with respect to the main argument, and, more surprisingly, with respect to the parameter ψ(γ). In particular, this generalizes a result of Hartman [Ann. Sc. Norm. Super. Pisa Cl. Sci. IV-III (1976) 267–287] for the increasing solution of the Bessel differential equation. Finally, we compute, for some cases, the associated decreasing eigenfunctions and derive the Laplace transform of the exponential functionals of some spectrally negative Lévy processes with a negative first moment.

Nous commençons par caractériser les fonctions propres croissantes, au sens strict, de la famille d’opérateurs intégro-différentiels (0.1), pour tout α>0, γ≥0, f une function définie sur $\mathfrak{R}^{+}$ et suffissament régulière, et où les coefficients $b\in\mathfrak{R}$, σ≥0 et la mesure ν, qui satisfait la condition d’intégrabilité 0(1∧r2)ν(dr)<+∞, sont données, de manière unique, par la distribution d’une variable aléatoire infiniment divisible et spectralement négative dont on écrit ψ son exposant caractéristique. L(γ) est le générateur infinitésimal d’un processus positif Fellerien α-auto-similaire, introduit par Lamperti [Z. Wahrsch. Verw. Gebiete 22 (1972) 205–225]. Les fonctions propres sont définies en terme d’une nouvelle famille de séries entières qui contient, par exemple, les fonctions de Bessel modifiées du premier ordre et des généralisations des fonctions de Mittag-Leffler. Nous continuons par montrer que des combinaisons particulières de ces séries entières correspondent à des transformées de Laplace de variables aléatoires positives auto-décomposables ou infiniment divisibles, par rapport à la valeur propre associée mais aussi par rapport au paramètre ψ(γ), ce qui est plus surprenant. En particulier, ceci généralise un résultat de Hartman [Ann. Sc. Norm. Super. Pisa Cl. Sci. IV-III (1976) 267–287] sur les fonctions de Bessel modifiées. Finalement, nous calculons, dans certains cas, les fonctions propres décroissantes, ce qui nous permet de caractériser la loi, par le biais de sa transformée de Laplace, de la fonctionnelle exponentielle de certains processus de Lévy spectralement négatifs ayant un premier moment négatif.

References

1.

[1] R. P. Agarwal. A propos d’une note de M. Pierre Humbert. C. R. Math. Acad. Sci. Paris 236 (1953) 2031–2032. 0051.30801[1] R. P. Agarwal. A propos d’une note de M. Pierre Humbert. C. R. Math. Acad. Sci. Paris 236 (1953) 2031–2032. 0051.30801

2.

[2] V. Bally and L. Stoica. A class of Markov processes which admit a local time. Ann. Probab. 15 (1987) 241–262. 0615.60069 10.1214/aop/1176992266 euclid.aop/1176992266[2] V. Bally and L. Stoica. A class of Markov processes which admit a local time. Ann. Probab. 15 (1987) 241–262. 0615.60069 10.1214/aop/1176992266 euclid.aop/1176992266

3.

[3] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996.[3] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996.

4.

[4] J. Bertoin and M. Yor. The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 (2002) 389–400. 1004.60046 10.1023/A:1016377720516[4] J. Bertoin and M. Yor. The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 (2002) 389–400. 1004.60046 10.1023/A:1016377720516

5.

[5] J. Bertoin and M. Yor. On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes. Ann. Fac. Sci. Toulouse Math. 11 (2002) 19–32.[5] J. Bertoin and M. Yor. On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes. Ann. Fac. Sci. Toulouse Math. 11 (2002) 19–32.

6.

[6] J. Bertoin and M. Yor. Exponential functionals of Lévy processes. Probab. Surv. 2 (2005) 191–212. MR2178044 1189.60096 10.1214/154957805100000122 euclid.ps/1127136329[6] J. Bertoin and M. Yor. Exponential functionals of Lévy processes. Probab. Surv. 2 (2005) 191–212. MR2178044 1189.60096 10.1214/154957805100000122 euclid.ps/1127136329

7.

[7] Ph. Biane and M. Yor. Variations sur une formule de Paul Lévy. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 359–377. 0623.60099[7] Ph. Biane and M. Yor. Variations sur une formule de Paul Lévy. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 359–377. 0623.60099

8.

[8] R. M. Blumenthal. On construction of Markov processes. Z. Wahrsch. Verw. Gebiete 63 (1983) 433–444. 0494.60071 10.1007/BF00533718[8] R. M. Blumenthal. On construction of Markov processes. Z. Wahrsch. Verw. Gebiete 63 (1983) 433–444. 0494.60071 10.1007/BF00533718

9.

[9] Ph. Carmona, F. Petit and M. Yor. Sur les fonctionnelles exponentielles de certains processus de Lévy. Stoch. Stoch. Rep. 47 (1994) 71–101. (English version in [38], p. 139–171.) 0830.60072 10.1080/17442509408833883[9] Ph. Carmona, F. Petit and M. Yor. Sur les fonctionnelles exponentielles de certains processus de Lévy. Stoch. Stoch. Rep. 47 (1994) 71–101. (English version in [38], p. 139–171.) 0830.60072 10.1080/17442509408833883

10.

[10] M. E. Caballero and L. Chaumont. Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34 (2006) 1012–1034. 1098.60038 10.1214/009117905000000611 euclid.aop/1151418491[10] M. E. Caballero and L. Chaumont. Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34 (2006) 1012–1034. 1098.60038 10.1214/009117905000000611 euclid.aop/1151418491

11.

[11] Z. Ciesielski and S. J. Taylor. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962) 434–450. 0121.13003 10.1090/S0002-9947-1962-0143257-8[11] Z. Ciesielski and S. J. Taylor. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962) 434–450. 0121.13003 10.1090/S0002-9947-1962-0143257-8

12.

[12] E. B. Dynkin. Markov Processes I, II. Die Grundlehren der Mathematischen Wissenschaften, Bände 121 122. Academic Press, New York, 1965.[12] E. B. Dynkin. Markov Processes I, II. Die Grundlehren der Mathematischen Wissenschaften, Bände 121 122. Academic Press, New York, 1965.

13.

[13] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi. Higher Transcendental Functions 3. McGraw-Hill, New York, 1955.[13] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi. Higher Transcendental Functions 3. McGraw-Hill, New York, 1955.

14.

[14] W. E. Feller. An Introduction to Probability Theory and Its Applications 2, 2nd edition. Wiley, New York, 1971. 0219.60003[14] W. E. Feller. An Introduction to Probability Theory and Its Applications 2, 2nd edition. Wiley, New York, 1971. 0219.60003

15.

[15] I. I. Gikhman and A. V. Skorokhod. The Theory of Stochastic Processes II. Springer, Berlin, 1975. 0348.60042[15] I. I. Gikhman and A. V. Skorokhod. The Theory of Stochastic Processes II. Springer, Berlin, 1975. 0348.60042

16.

[16] P. Hartman. Completely monotone families of solutions of n-th order linear differential equations and infinitely divisible distributions. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV-III (1976) 267–287. 0386.34016[16] P. Hartman. Completely monotone families of solutions of n-th order linear differential equations and infinitely divisible distributions. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV-III (1976) 267–287. 0386.34016

17.

[17] P. Hartman and G. S. Watson. “Normal” distribution functions on spheres and the modified Bessel functions. Ann. Probab. 2 (1974) 593–607. 0305.60033 10.1214/aop/1176996606 euclid.aop/1176996606[17] P. Hartman and G. S. Watson. “Normal” distribution functions on spheres and the modified Bessel functions. Ann. Probab. 2 (1974) 593–607. 0305.60033 10.1214/aop/1176996606 euclid.aop/1176996606

18.

[18] P. Humbert. Quelques résultats relatifs à la fonction de Mittag-Leffler. C. R. Math. Acad. Sci. Paris 236 (1953) 1467–1468. 0050.10404[18] P. Humbert. Quelques résultats relatifs à la fonction de Mittag-Leffler. C. R. Math. Acad. Sci. Paris 236 (1953) 1467–1468. 0050.10404

19.

[19] M. Jeanblanc, J. Pitman and M. Yor. Self-similar processes with independent increments associated with Lévy and Bessel processes. Stochastic Process. Appl. 100 (2002) 223–232. 1059.60052 10.1016/S0304-4149(02)00098-4[19] M. Jeanblanc, J. Pitman and M. Yor. Self-similar processes with independent increments associated with Lévy and Bessel processes. Stochastic Process. Appl. 100 (2002) 223–232. 1059.60052 10.1016/S0304-4149(02)00098-4

20.

[20] J. Kent. Some probabilistic properties of Bessel functions. Ann. Probab. 6 (1978) 760–770. 0402.60080 10.1214/aop/1176995427 euclid.aop/1176995427[20] J. Kent. Some probabilistic properties of Bessel functions. Ann. Probab. 6 (1978) 760–770. 0402.60080 10.1214/aop/1176995427 euclid.aop/1176995427

21.

[21] A. A. Kilbas and J. J. Trujillo. Differential equations of fractional orders: Methods, results and problems. Appl. Anal. 78 (2001) 153–192. 1031.34002 10.1080/00036810108840931[21] A. A. Kilbas and J. J. Trujillo. Differential equations of fractional orders: Methods, results and problems. Appl. Anal. 78 (2001) 153–192. 1031.34002 10.1080/00036810108840931

22.

[22] A. A. Kilbas and M. Saigo. On solution of integral equations of Abel–Volterra type. Differential Integral Equations 8 (1995) 993–1011. MR1325543 0823.45002 euclid.die/1369056041[22] A. A. Kilbas and M. Saigo. On solution of integral equations of Abel–Volterra type. Differential Integral Equations 8 (1995) 993–1011. MR1325543 0823.45002 euclid.die/1369056041

23.

[23] J. Lamperti. Semi-stable Markov processes. Z. Wahrsch. Verw. Gebiete 22 (1972) 205–225. 0274.60052 10.1007/BF00536091[23] J. Lamperti. Semi-stable Markov processes. Z. Wahrsch. Verw. Gebiete 22 (1972) 205–225. 0274.60052 10.1007/BF00536091

24.

[24] N. N. Lebedev. Special Functions and Their Applications. Dover, New York, 1972. 0271.33001[24] N. N. Lebedev. Special Functions and Their Applications. Dover, New York, 1972. 0271.33001

25.

[25] P. Lévy. Wiener’s random functions, and other Laplacian random functions. In Proc. Sec. Berkeley Symp. Math. Statist. Probab., 1950 II. 171–187. California Univ. Press, Berkeley, 1951.[25] P. Lévy. Wiener’s random functions, and other Laplacian random functions. In Proc. Sec. Berkeley Symp. Math. Statist. Probab., 1950 II. 171–187. California Univ. Press, Berkeley, 1951.

26.

[26] K. Maulik and B. Zwart. Tail asymptotics for exponential functionals of Lévy processes. Stochastic Process. Appl. 116 (2006) 156–177. 1090.60046 10.1016/j.spa.2005.09.002[26] K. Maulik and B. Zwart. Tail asymptotics for exponential functionals of Lévy processes. Stochastic Process. Appl. 116 (2006) 156–177. 1090.60046 10.1016/j.spa.2005.09.002

27.

[27] P. A. Meyer. Processus à accroissements indépendants et positifs. Séminaire de probabilités de Strasbourg 3 (1969) 175–189.[27] P. A. Meyer. Processus à accroissements indépendants et positifs. Séminaire de probabilités de Strasbourg 3 (1969) 175–189.

28.

[28] G. Mittag-Leffler. Sur la nouvelle function Eα(x). C. R. Math. Acad. Sci. Paris 137 (1903) 554–558. 34.0435.01[28] G. Mittag-Leffler. Sur la nouvelle function Eα(x). C. R. Math. Acad. Sci. Paris 137 (1903) 554–558. 34.0435.01

29.

[29] P. Patie. Exponential functional of one-sided Lévy processes and self-similar continuous state branching processes with immigration. Bull. Sci. Math. In press, 2008.[29] P. Patie. Exponential functional of one-sided Lévy processes and self-similar continuous state branching processes with immigration. Bull. Sci. Math. In press, 2008.

30.

[30] J. Pitman and M. Yor. Bessel processes and infinitely divisible laws. In Stochastic Integrals (In Proc. Sympos. Univ. Durham, Durham, 1980) 285–370. D. Williams (ed.). Lecture Notes in Math. 851. Springer, Berlin, 1981.[30] J. Pitman and M. Yor. Bessel processes and infinitely divisible laws. In Stochastic Integrals (In Proc. Sympos. Univ. Durham, Durham, 1980) 285–370. D. Williams (ed.). Lecture Notes in Math. 851. Springer, Berlin, 1981.

31.

[31] V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér’s condition. Bernoulli 11 (2005) 471–509. 1077.60055 10.3150/bj/1120591185 euclid.bj/1120591185[31] V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér’s condition. Bernoulli 11 (2005) 471–509. 1077.60055 10.3150/bj/1120591185 euclid.bj/1120591185

32.

[32] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999.[32] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999.

33.

[33] F. W. Steutel and K. van Harn. Infinite divisibility of probability distributions on the real line. Monographs and Textbooks in Pure and Applied Mathematics 259. Marcel Dekker Inc., New York, 2004.[33] F. W. Steutel and K. van Harn. Infinite divisibility of probability distributions on the real line. Monographs and Textbooks in Pure and Applied Mathematics 259. Marcel Dekker Inc., New York, 2004.

34.

[34] J. Vuolle-Apiala. Itô excursion theory for self-similar Markov processes. Ann. Probab. 22 (1994) 546–565.[34] J. Vuolle-Apiala. Itô excursion theory for self-similar Markov processes. Ann. Probab. 22 (1994) 546–565.

35.

[35] S. J. Wolfe. On the unimodality of L functions. Ann. Math. Stat. 42 (1971) 912–918. 0219.60026 10.1214/aoms/1177693320 euclid.aoms/1177693320[35] S. J. Wolfe. On the unimodality of L functions. Ann. Math. Stat. 42 (1971) 912–918. 0219.60026 10.1214/aoms/1177693320 euclid.aoms/1177693320

36.

[36] S. J. Wolfe. On a continuous analogue of the stochastic difference equation Xn=ρXn−1+Bn. Stochastic Process. Appl. 12 (1982) 301–312.[36] S. J. Wolfe. On a continuous analogue of the stochastic difference equation Xn=ρXn−1+Bn. Stochastic Process. Appl. 12 (1982) 301–312.

37.

[37] M. Yor. Loi de l’indice du lacet brownien et distribution de Hartman–Watson. Z. Wahrsch. Verw. Gebiete 53 (1980) 71–95.[37] M. Yor. Loi de l’indice du lacet brownien et distribution de Hartman–Watson. Z. Wahrsch. Verw. Gebiete 53 (1980) 71–95.

38.

[38] M. Yor. Exponential Functionals of Brownian Motion and Related Processes. Springer, Berlin, 2001. 0999.60004[38] M. Yor. Exponential Functionals of Brownian Motion and Related Processes. Springer, Berlin, 2001. 0999.60004
Copyright © 2009 Institut Henri Poincaré
Patie Pierre "Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes," Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 45(3), 667-684, (August 2009). https://doi.org/10.1214/08-AIHP182
Published: August 2009
Vol.45 • No. 3 • August 2009
Back to Top