Open Access
Translator Disclaimer
2014 Optimal Design of Complex Passive-Damping Systems for Vibration Control of Large Structures: An Energy-to-Peak Approach
Francisco Palacios-Quiñonero, Josep Rubió-Massegú, Josep M. Rossell, Hamid Reza Karimi
Abstr. Appl. Anal. 2014: 1-9 (2014). DOI: 10.1155/2014/510236


We present a new design strategy that makes it possible to synthesize decentralized output-feedback controllers by solving two successive optimization problems with linear matrix inequality (LMI) constraints. In the initial LMI optimization problem, two auxiliary elements are computed: a standard state-feedback controller, which can be taken as a reference in the performance assessment, and a matrix that facilitates a proper definition of the main LMI optimization problem. Next, by solving the second optimization problem, the output-feedback controller is obtained. The proposed strategy extends recent results in static output-feedback control and can be applied to design complex passive-damping systems for vibrational control of large structures. More precisely, by taking advantages of the existing link between fully decentralized velocity-feedback controllers and passive linear dampers, advanced active feedback control strategies can be used to design complex passive-damping systems, which combine the simplicity and robustness of passive control systems with the efficiency of active feedback control. To demonstrate the effectiveness of the proposed approach, a passive-damping system for the seismic protection of a five-story building is designed with excellent results.


Download Citation

Francisco Palacios-Quiñonero. Josep Rubió-Massegú. Josep M. Rossell. Hamid Reza Karimi. "Optimal Design of Complex Passive-Damping Systems for Vibration Control of Large Structures: An Energy-to-Peak Approach." Abstr. Appl. Anal. 2014 1 - 9, 2014.


Published: 2014
First available in Project Euclid: 6 October 2014

zbMATH: 07022515
Digital Object Identifier: 10.1155/2014/510236

Rights: Copyright © 2014 Hindawi


Vol.2014 • 2014
Back to Top