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We present a new design strategy that makes it possible to synthesize decentralized output-feedback controllers by solving two
successive optimization problems with linear matrix inequality (LMI) constraints. In the initial LMI optimization problem, two
auxiliary elements are computed: a standard state-feedback controller, which can be taken as a reference in the performance
assessment, and a matrix that facilitates a proper definition of the main LMI optimization problem. Next, by solving the second
optimization problem, the output-feedback controller is obtained. The proposed strategy extends recent results in static output-
feedback control and can be applied to design complex passive-damping systems for vibrational control of large structures. More
precisely, by taking advantages of the existing link between fully decentralized velocity-feedback controllers and passive linear
dampers, advanced active feedback control strategies can be used to design complex passive-damping systems, which combine the
simplicity and robustness of passive control systems with the efficiency of active feedback control. To demonstrate the effectiveness
of the proposed approach, a passive-damping system for the seismic protection of a five-story building is designed with excellent
results.

1. Introduction

The latest trends in vibration control of large structures con-
sider distributed actuation systems, whichmitigate the vibra-
tional response of the overall structure by means of the coor-
dinated actuation of a large number of medium-size semi-
active or passive devices [1–3]. In this context, decentralized
and semidecentralized control strategies are especially rel-
evant, and fully decentralized velocity-feedback controllers
constitute a case of particular interest [4–9]. In addition to
the typical advantages of decentralization, fully decentral-
ized velocity-feedback controllers have the singular feature
of admitting a passive implementation by means of linear
dampers. By taking advantages of this property, advanced
active feedback control strategies can be used to design

complex passive-damping systems for vibration control of
large structures. The passive-damping systems so obtained
combine the simplicity and robustness of passive control
systems with the effectiveness of active feedback control
systems [10–12]. However, from a practical point of view, this
approach leads to serious difficulties, mainly associated with
the high computational cost of designing decentralized static
output-feedback controllers [13–16].

Recently, an effective two-step design methodology to
synthesize output-feedback controllers has been proposed in
[17]. In the initial step, the goal is to obtain a satisfactory state-
feedback controller by solving an optimization problem with
linearmatrix inequality (LMI) constraintsP

𝑠
. Next, a second

LMI optimization problem P
𝑜
is derived by introducing in
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P
𝑠
a suitable transformation of the LMI variables, and the

desired output-feedback controller is computed by solving
P
𝑜
.
The transformations of the LMI variables used to obtain

the output-feedback LMI optimization problem P
𝑜
from

the state-feedback LMI optimization problemP
𝑠
contain an

arbitrary matrix 𝐿, which plays a critical role in both the
feasibility and the effectiveness of the method [17, 18]. A sim-
plified version of this design methodology has been success-
fully applied in designing decentralized velocity-feedback
controllers for seismic protection of single buildings [19,
20] and two-building systems [21]. These preliminary works
were conducted using a null 𝐿-matrix and, in all the cases,
the corresponding LMI optimization problems P

𝑜
were

initially reported to be infeasible by the Matlab LMI solver
[22]. Although these feasibility issues could be conveniently
overcome by using a slightly perturbed statematrix, it became
apparent that a more satisfactory solution to the problemwas
certainly desirable.

After a detailed study of the LMI variables’ transforma-
tions, an advanced choice of the 𝐿-matrix has been proposed
in [17], which makes it possible to compute centralized
velocity-feedback 𝐻

∞
controllers for structural vibration

control with no feasibility issues.This choice, however, fails to
produce positive results in the relevant case of fully decentral-
ized velocity-feedback controllers.

Over the last years, the energy-to-peak approach has been
attracting an increasing research interest. Some recent appli-
cations of this design strategy to structural vibration control
and other complex control problems can be found in [21, 23–
28]. In the present paper, we provide a new choice of the 𝐿-
matrix that allows synthesizing fully decentralized velocity-
feedback energy-to-peak controllers for structural vibration
control of large structures without feasibility issues and with
an excellent level of performance. For brevity and clarity, a
particular five-story building has been chosen to introduce
the main ideas. A more general description of the design
procedure can be found in [17–19].

The paper is organized as follows. In Section 2, a math-
ematical model for the five-story building is provided.
Section 3 is devoted to complete the initial step of the design
procedure. More specifically, an ideal state-feedback energy-
to-peak controller is designed, and numerical simulations are
conducted to demonstrate its effectiveness.Next, in Section 4,
two different velocity-feedback controllers are synthesized.
Firstly, a centralized velocity-feedback controller is computed
using the 𝐿-matrix choice proposed in [17]. Secondly, a
fully decentralized velocity-feedback controller is obtained by
means of a novel choice of the 𝐿-matrix. This decentralized
controller can be implemented by a set of linear passive
dampers, which can operate without sensors, with no com-
munication system and null power consumption. To assess
the effectiveness of the proposed passive control system,
numerical simulations of the building vibrational response
are conducted and compared with the results attained by the
ideal active state-feedback controller. Finally, in Section 5,
some conclusions and future research directions are briefly
presented.

2. Five-Story Building Model

Let us consider a five-story building whose lateral motion can
be described by the following differential equation:

𝑀 ̈𝑞 (𝑡) + 𝐶
𝑑
̇𝑞 (𝑡) + 𝐾

𝑠
𝑞 (𝑡) = 𝑇

𝑢
𝑢 (𝑡) + 𝑇

𝑤
𝑤 (𝑡) , (1)

where

𝑞 (𝑡) = [𝑞
1
(𝑡) , 𝑞
2
(𝑡) , 𝑞
3
(𝑡) , 𝑞
4
(𝑡) , 𝑞
5
(𝑡)]
𝑇 (2)

is the vector of displacements relative to the ground, 𝑤(𝑡)
denotes the seismic ground acceleration, and

𝑢 (𝑡) = [𝑢
1
(𝑡) , 𝑢
2
(𝑡) , 𝑢
3
(𝑡) , 𝑢
4
(𝑡) , 𝑢
5
(𝑡)]
𝑇 (3)

represents the vector of control actions. 𝑀, 𝐶
𝑑
, and 𝐾

𝑠
are

the mass, damping, and stiffness matrices, respectively, 𝑇
𝑢
is

the control location matrix, and 𝑇
𝑤
is the excitation location

matrix.The following particular values of thematrices𝑀,𝐶
𝑑
,

𝐾
𝑠
, 𝑇
𝑢
, and 𝑇

𝑤
are used in the present paper:

𝑀 = 10
3

×

[
[
[
[
[

[

215.2 0 0 0 0

0 209.2 0 0 0

0 0 207.0 0 0

0 0 0 204.8 0

0 0 0 0 266.1

]
]
]
]
]

]

,

𝐶
𝑑
= 10
3

×

[
[
[
[
[

[

650.4 −231.1 0 0 0

−231.1 548.9 −202.5 0 0

0 −202.5 498.6 −182.0 0

0 0 −182.0 466.8 −171.8

0 0 0 −171.8 318.5

]
]
]
]
]

]

,

𝐾
𝑠
= 10
6

×

[
[
[
[
[

[

260 −113 0 0 0

−113 212 −99 0 0

0 −99 188 −89 0

0 0 −89 173 −84

0 0 0 −84 84

]
]
]
]
]

]

,

𝑇
𝑢
=

[
[
[
[
[

[

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

0 0 0 0 1

]
]
]
]
]

]

, 𝑇
𝑤
= −𝑀

[
[
[
[
[

[

1

1

1

1

1

]
]
]
]
]

]

,

(4)

where masses are in kg, damping coefficients in Ns/m, and
stiffness coefficients in N/m. The mass and stiffness values
used in the matrices𝑀 and𝐾

𝑠
are similar to those presented

in [29], and the damping matrix 𝐶
𝑑
has been computed as

a Rayleigh damping matrix with a 5% damping ratio on the
first and fifthmodes [30].We assume that an actuation device
𝑎
𝑖
has been implemented between the consecutive stories 𝑠

𝑖−1

and 𝑠
𝑖
, 𝑖 = 1, . . . , 5. The actuation device 𝑎

𝑖
exerts a control

action 𝑢
𝑖
(𝑡), which produces a pair of structural opposite

forces as indicated in Figure 1. By considering the state vector,

𝑥
𝐼
(𝑡) = [

𝑞 (𝑡)

̇𝑞 (𝑡)
] , (5)
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we can derive a first-order state-space model

𝑥̇
𝐼
(𝑡) = 𝐴

𝐼
𝑥
𝐼
(𝑡) + 𝐵

𝐼
𝑢 (𝑡) + 𝐸

𝐼
𝑤 (𝑡) (6)

with the following system matrices:

𝐴
𝐼
= [

[0]
5×5

𝐼
5

−𝑀
−1

𝐾
𝑠
−𝑀
−1

𝐶
𝑑

] ,

𝐵
𝐼
= [

[0]
5×5

𝑀
−1

𝑇
𝑢

] , 𝐸
𝐼
= [

[0]
5×1

−[1]
5×1

] ,

(7)

where [0]
𝑛×𝑚

represents a zero-matrix of the indicated
dimensions, 𝐼

𝑛
is the identity matrix of order 𝑛, and [1]

𝑛×1

denotes a vector of dimension 𝑛 with all its entries equal to 1.
Next, we consider the vector of interstory drifts,

𝑟 (𝑡) = [𝑞
1
, 𝑞
2
− 𝑞
1
, . . . , 𝑞

5
− 𝑞
4
]
𝑇 (8)

and the vector of interstory velocities,

V (𝑡) = [ ̇𝑞
1
, ̇𝑞
2
− ̇𝑞
1
, . . . , ̇𝑞

5
− ̇𝑞
4
]
𝑇

, (9)

and define the new state vector,

𝑥 (𝑡) = [
𝑟 (𝑡)

V (𝑡)] , (10)

which can be expressed as

𝑥 (𝑡) = C𝑥
𝐼
(𝑡) (11)

with the change of basis matrix

C =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 −1 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (12)

The new state-space model can be written as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐸𝑤 (𝑡) , (13)

with

𝐴 = C𝐴
𝐼
C
−1

, 𝐵 = C𝐵
𝐼
, 𝐸 = C𝐸

𝐼
. (14)

For the particular building matrices given in (4), we obtain
the system matrices presented in (15):

𝐴 = 10
3

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0.0010 0 0 0 0

0 0 0 0 0 0 0.0010 0 0 0

0 0 0 0 0 0 0 0.0010 0 0

0 0 0 0 0 0 0 0 0.0010 0

0 0 0 0 0 0 0 0 0 0.0010

−0.6831 0.5251 0 0 0 −0.0019 0.0011 0 0 0

0.6831 −1.0652 0.4732 0 0 0.0014 −0.0027 0.0010 0 0

0 0.5402 −0.9515 0.4300 0 0 0.0011 −0.0025 0.0009 0

0 0 0.4783 −0.8645 0.4102 0 0 0.0010 −0.0023 0.0008

0 0 0 0.4346 −0.7258 0 0 0 0.0009 −0.0020

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵 = 10
−5

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.4647 −0.4647 0 0 0

−0.4647 0.9427 −0.4780 0 0

0 −0.4780 0.9611 −0.4831 0

0 0 −0.4831 0.9714 −0.4883

0 0 0 −0.4883 0.8641

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, 𝐸 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

0

0

0

0

−1

0

0

0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(15)

𝐺
𝑠
= 10
7

×

[
[
[
[
[

[

3.6830 −0.3330 −1.2296 −1.6206 −1.1538 −0.3751 −0.2093 −0.1011 −0.0347 −0.0059

2.7397 0.3097 −0.9642 −1.5512 −1.1682 −0.2123 −0.2741 −0.1705 −0.1042 −0.0526

−1.0352 0.5680 −0.0594 0.3626 0.1681 −0.0801 −0.1139 −0.1958 −0.1157 −0.0663

−3.5761 −0.2533 1.4597 1.4264 1.4844 −0.0074 −0.0206 −0.0603 −0.1439 −0.0616

−3.4161 −0.5983 1.3527 2.1085 0.9566 0.0100 0.0139 −0.0006 −0.0321 −0.1092

]
]
]
]
]

]

. (16)
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Figure 1: Five-story building actuation scheme.

3. State-Feedback Controller

The initial step of the design procedure proposed in [17] con-
sists in determining a satisfactory state-feedback controller.
This ideal controller has full access to the state informa-
tion and must satisfy the performance requirements of the
problem under consideration.

For the five-story building presented in Section 2, let us
assume that the goals in the controller design are minimizing
the interstory drifts seismic response and the control efforts.
To this end, we introduce the vector of controlled outputs:

𝑧 (𝑡) = 𝐶
𝑧
𝑥 (𝑡) + 𝐷

𝑧
𝑢 (𝑡) , (17)

where

𝐶
𝑧
= [

𝐼
5

[0]
5×5

[0]
5×5

[0]
5×5

] , 𝐷
𝑧
= 𝛼 [

[0]
5×5

𝐼
5

] , (18)

and𝛼 > 0 is a suitable coefficient that trades off the conflicting
design objectives. The aim of this section is to compute a
state-feedback energy-to-peak controller:

𝑢 (𝑡) = 𝐺
𝑠
𝑥 (𝑡) (19)

for the state-space system given in (13), using the controlled
output 𝑧(𝑡) to define the performance criteria. The energy-
to-peak control approach considers the largest gain from the
disturbance energy to the controlled-output peak:

𝛾
𝐺
= sup
0<‖𝑤‖2<∞

󵄩󵄩󵄩󵄩𝑧𝐺
󵄩󵄩󵄩󵄩∞

‖𝑤‖
2

, (20)

where 𝑤(𝑡) is the input disturbance,

𝑧
𝐺
(𝑡) = (𝐶

𝑧
+ 𝐷
𝑧
𝐺) 𝑥 (𝑡) (21)

is the closed-loop controlled-output corresponding to the
state-feedback controller 𝑢(𝑡) = 𝐺𝑥(𝑡), and

‖𝑤‖
2
= (∫

∞

0

𝑤
𝑇

(𝑡) 𝑤 (𝑡) 𝑑𝑡)

1/2

,

󵄩󵄩󵄩󵄩𝑧𝐺
󵄩󵄩󵄩󵄩∞

= sup
0≤𝑡<∞

(𝑧
𝑇

𝐺
(𝑡) 𝑧
𝐺
(𝑡))
1/2

.

(22)

Broadly speaking, the controller design consists in
obtaining a gain matrix 𝐺

𝑠
that produces an asymptotically

stable closed-loop system

𝑥̇ (𝑡) = (𝐴 + 𝐵𝐺
𝑠
) 𝑥 (𝑡) (23)

and, simultaneously, attains an optimally small 𝛾-value 𝛾̃
𝐺
𝑠

.
These objectives can be achieved by solving the following LMI
optimization problem [24]:

P
𝑠
:

{{

{{

{

minimize 𝜂

subject to 𝑋 > 0, 𝜂 > 0,

and the LMIs in (25) ,

(24)

𝐴𝑋 + 𝑋𝐴
𝑇

+ 𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

+ 𝐸𝐸
𝑇

< 0,

[
𝑋 ∗

𝐶
𝑧
𝑋 + 𝐷

𝑧
𝑌 𝜂𝐼

] > 0,

(25)

where ∗ denotes the transpose of the symmetric entry. If an
optimal value 𝜂

𝑠
is attained in P

𝑠
for the pair of matrices

(𝑋
𝑠
, 𝑌̃
𝑠
), then 𝐺

𝑠
can be written in the following form:

𝐺
𝑠
= 𝑌̃
𝑠
𝑋
−1

𝑠
, (26)

and the optimal 𝛾-value can be computed as follows:

𝛾̃
𝐺
𝑠

= 𝜂
1/2

𝑠
. (27)

By solving the optimization problemP
𝑠
with the system

matrices 𝐴, 𝐵, and 𝐸 displayed in (15), the matrices 𝐶
𝑧
and

𝐷
𝑧
defined in (18), and the value

𝛼 = 10
−7.55

, (28)

we obtain the state-feedback control gain matrix 𝐺
𝑠
pre-

sented in (16) and the optimal 𝛾-value:

𝛾̃
𝐺
𝑠

= 0.0395. (29)

To provide a better insight into the behavior of the state-
feedback controller defined by the gain matrix 𝐺

𝑠
, we have

conducted numerical simulations of the five-story build-
ing vibrational response, using the full scale North-South
1940 El Centro seismic record as ground acceleration input
(see Figure 2). The maximum absolute interstory drifts are
displayed in Figure 3, where the blue line with circles cor-
responds to the state-feedback controller, and the black
line with rectangles presents the vibrational response of the
uncontrolled building.Themaximumabsolute control efforts
corresponding to the state-feedback controller are displayed
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Figure 2: Full scale North-South El Centro 1940 seismic record.
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Figure 3: Maximum absolute interstory drifts corresponding to the
uncontrolled building (black linewith rectangles) and the controlled
building with the ideal state-feedback energy-to-peak controller
defined by the gain matrix 𝐺

𝑠
(blue line with circles). The full scale

North-South El Centro 1940 seismic record has been used as ground
acceleration disturbance.

in Figure 4. A quick look at the graphics clearly shows that the
proposed state-feedback energy-to-peak controller attains a
good level of reduction in the interstory drifts peak-values
withmoderate levels of control effort. In what follows, we will
assume that𝐺

𝑠
defines a suitable state-feedback controller for

the five- story building introduced in Section 2.

Remark 1. Looking at the graphic in Figure 4, it can be
observed that the control actions corresponding to the
proposed state-feedback controller present peak-values in
the range 0.6–1.0MN. Control forces of this magnitude, or
even larger, are commonly used in modern control systems
for vibration control of large structures [1, 5]. For example,
control forces of 1MN can be produced by the semiactive
hydraulic dampers implemented in the Kajima Shizuoka
building [29], and 2MN control forces can be obtained with
the passive hydraulic damper with semiactive characteristics
presented in [31].

4. Velocity-Feedback Controllers

In this section, the two-step design procedure proposed in
[17] is first applied to synthesize a centralized energy-to-
peak velocity-feedback controller for the five-story building
defined in Section 2. Next, a new choice of the 𝐿-matrix
is presented, which makes it possible to compute a fully
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at
or

Maximum absolute control efforts (×106 N)

Figure 4: Maximum absolute control efforts corresponding to the
controlled building with the ideal state-feedback energy-to-peak
controller defined by the gain matrix 𝐺

𝑠
. The full scale North-South

El Centro 1940 seismic record has been used as ground acceleration
disturbance.

decentralized energy-to-peak velocity-feedback controller
with no feasibility issues.

4.1. Centralized Velocity-Feedback Controller. In this section,
we assume that the information available for feedback pur-
poses is the vector of interstory velocities V(𝑡) defined in (9),
which can be written in the form

V (𝑡) = 𝐶V𝑥 (𝑡) (30)

by taking the observed-output matrix

𝐶V = [[0]
5×5

𝐼
5
] . (31)

In this case, we consider the velocity-feedback controller:

𝑢 (𝑡) = 𝐾̃V (𝑡) , (32)

and the energy-to-peak design objective consists in obtaining
a gainmatrix 𝐾̃ that produces an asymptotically stable closed-
loop system

𝑥̇ (𝑡) = (𝐴 + 𝐵𝐺
𝑘
) 𝑥 (𝑡) (33)

and, simultaneously, attains an optimally small 𝛾-value 𝛾̃
𝐺
𝑘

,
where

𝐺
𝑘
= 𝐾̃𝐶V (34)

is the state gain matrix associated with the velocity-feedback
controller. According to the ideas presented in [18], the gain
matrix 𝐾̃ can be computed by considering the state-feedback
LMI optimization problemP

𝑠
given in (24) and the following

transformations of the LMI variables𝑋 and 𝑌:

𝑋 = 𝑄𝑋
𝑄
𝑄
𝑇

+ 𝑅𝑋
𝑅
𝑅
𝑇

, 𝑌 = 𝑌
𝑅
𝑅
𝑇

, (35)

which introduce, as new variables, a square matrix𝑌
𝑅
∈ R5×5

and two symmetric matrices𝑋
𝑄
∈ R5×5 and𝑋

𝑅
∈ R5×5. Two

constant matrices, 𝑄 ∈ R10×5 and 𝑅 ∈ R10×5, are used to
define the LMI variable transformations.𝑄 is a matrix whose
columns contain a basis of Ker(𝐶V), and the matrix 𝑅 has the
following form:

𝑅 = 𝐶
†

V + 𝑄𝐿, (36)
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where

𝐶
†

V = 𝐶
𝑇

V (𝐶V𝐶
𝑇

V )
−1 (37)

is the Moore-Penrose pseudoinverse of 𝐶V, and 𝐿 ∈ R5×5

denotes an arbitrary and constant matrix.
By substituting the transformations (35) in (25), we obtain

the LMIs:

𝐴𝑄𝑋
𝑄
𝑄
𝑇

+ 𝑄𝑋
𝑄
𝑄
𝑇

𝐴
𝑇

+ 𝐴𝑅𝑋
𝑅
𝑅
𝑇

+ 𝑅𝑋
𝑅
𝑅
𝑇

𝐴
𝑇

+ 𝐵𝑌
𝑅
𝑅
𝑇

+ 𝑅𝑌
𝑇

𝑅
𝐵
𝑇

+ 𝐸𝐸
𝑇

< 0,

[
𝑄𝑋
𝑄
𝑄
𝑇

+ 𝑅𝑋
𝑅
𝑅
𝑇

∗

𝐶
𝑧
𝑄𝑋
𝑄
𝑄
𝑇

+ 𝐶
𝑧
𝑅𝑋
𝑅
𝑅
𝑇

+ 𝐷
𝑧
𝑌
𝑅
𝑅
𝑇

𝜂𝐼
] > 0.

(38)

A centralized velocity-feedback energy-to-peak controller
can now be designed by solving the following LMI optimiza-
tion problem:

P
𝑜
:

{{

{{

{

minimize 𝜂

subject to 𝑋
𝑄
> 0, 𝑋

𝑅
> 0, 𝜂 > 0,

and the LMIs in (38) .

(39)

If an optimal value 𝜂
𝑜
is attained in P

𝑜
for the triplet

(𝑋
𝑄
, 𝑋
𝑅
, 𝑌̃
𝑅
), then the velocity gain matrix 𝐾̃ can be written

in the form

𝐾̃ = 𝑌̃
𝑅
(𝑋
𝑅
)
−1

, (40)

and the corresponding 𝛾-value satisfies

𝛾̃
𝐺
𝑘

≤ 𝜂
1/2

𝑜
. (41)

By solving the optimization problem P
𝑜
with the same

matrices𝐴,𝐵,𝐸,𝐶
𝑧
, and𝐷

𝑧
used in the optimization problem

P
𝑠
and the following matrices 𝑄 and 𝑅:

𝑄 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (42)

𝑅 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.0007 0.0086 0.0112 0.0120 0.0089

−0.0260 −0.0088 0.0151 0.0235 0.0181

−0.0201 −0.0117 −0.0006 0.0134 0.0129

−0.0097 −0.0078 −0.0057 −0.0061 0.0004

−0.0014 −0.0030 −0.0067 −0.0084 −0.0109

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(43)

we obtain the velocity gain matrix

𝐾̃ = 10
6

×

[
[
[
[
[

[

−3.0212 −0.9868 −0.4766 −0.4127 −0.3271

−0.7667 −2.7879 −1.6298 −0.7395 −0.2145

−0.6874 −1.3196 −2.3003 −1.2415 −0.5403

−0.7940 −0.3717 −1.0121 −2.1209 −1.2644

−0.7082 0.0873 −0.2535 −1.1524 −1.9441

]
]
]
]
]

]

(44)

with an associated 𝛾-value that satisfies

𝛾̃
𝐺
𝑘

≤ 0.0397. (45)

The matrix 𝑅 in (43) has been computed using the 𝐿-
matrix:

𝐿 = 𝑄
†

𝑋
𝑠
𝐶
𝑇

V (𝐶V𝑋𝑠𝐶
𝑇

V )
−1

, (46)

where

𝑄
†

= (𝑄
𝑇

𝑄)
−1

𝑄
𝑇 (47)

is theMoore-Penrosepseudoinverse of𝑄 and𝑋
𝑠
is the optimal

𝑋-matrix of the state-feedback optimization problem P
𝑠
.

With this particular choice of the 𝐿-matrix, it has been pos-
sible to solve the LMI optimization problemP

𝑜
with no fea-

sibility issues and, moreover, we have obtained a practically
optimal velocity-feedback controller. This approach has also
been used in [17] to design a centralized velocity-feedback
𝐻
∞

controller with positive results.

4.2. Fully Decentralized Velocity-Feedback Controller. Now,
we are interested in obtaining a fully decentralized velocity-
feedback energy-to-peak controller:

𝑢 (𝑡) = 𝐾̃
𝑑
V (𝑡) . (48)

In this case, the gain matrix 𝐾̃
𝑑
has a diagonal structure:

𝐾̃
𝑑
=

[
[
[
[
[

[

𝑘
11

0 0 0 0

0 𝑘
22

0 0 0

0 0 𝑘
33

0 0

0 0 0 𝑘
44

0

0 0 0 0 𝑘
55

]
]
]
]
]

]

, (49)

and, in principle, it could be computed by solving the LMI
optimization problem P

𝑜
, given in (39), with the additional

zero-nonzero structure constraints:

𝑋
𝑅
=

[
[
[
[
[

[

◼ 0 0 0 0

0 ◼ 0 0 0

0 0 ◼ 0 0

0 0 0 ◼ 0

0 0 0 0 ◼

]
]
]
]
]

]

,

𝑌
𝑅
=

[
[
[
[
[

[

◼ 0 0 0 0

0 ◼ 0 0 0

0 0 ◼ 0 0

0 0 0 ◼ 0

0 0 0 0 ◼

]
]
]
]
]

]

,

(50)
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where the black squares represent the allowed positions
for nonzero elements. Unfortunately, this LMI optimization
problem with structure constraints is reported to be unfeasi-
ble by theMatlab LMI solver, and the same situation happens
for the𝐻

∞
approach.

It must be observed, however, that the 𝐿-matrix in (36)
is an arbitrary matrix and, consequently, other choices can
be made to cope with the encountered feasibility issues. After
exploring some slight variations of the𝐿-matrix given in (46),
a proper solution to the present problemhas been obtained by
taking an 𝐿-matrix with the following form:

𝐿
𝑑
= 𝑄
†

𝑋
𝑠
𝐶
𝑇

V (𝐶V𝑋
(𝑑)

𝑠
𝐶
𝑇

V )
−1

, (51)

where 𝑋
(𝑑)

𝑠
is a diagonal matrix that contains the diagonal

elements of 𝑋
𝑠
. More precisely, the elements of 𝑋(𝑑)

𝑠
can be

written as

𝑥
(𝑑)

𝑖𝑗
= 𝛿
𝑖𝑗
𝑥
𝑖𝑗
, (52)

where 𝛿
𝑖𝑗
is Kronecker’s delta and 𝑥

𝑖𝑗
are the elements of 𝑋

𝑠
.

With this new choice of the matrix 𝐿, the LMI optimization
problemP

𝑜
with the structure constraints set in (50) can be

properly solved and it produces the velocity-feedback gain
matrix:

𝐾̃
𝑑
= 10
6

×

[
[
[
[
[

[

−5.8490 0 0 0 0

0 −5.5039 0 0 0

0 0 −4.9631 0 0

0 0 0 −4.7182 0

0 0 0 0 −4.6619

]
]
]
]
]

]

.

(53)

In this case, the associated 𝛾-value satisfies

𝛾̃
𝐺
𝑑

≤ 0.0454, (54)

where

𝐺
𝑑
= 𝐾̃
𝑑
𝐶V (55)

is the state gain matrix associated with the decentralized
velocity-feedback controller.

Remark 2. It should be highlighted that the value 0.0454 in
(54) is just an upper bound [21]. The actual value of 𝛾̃

𝐺
𝑑

can
be computed by considering the LMIs,

(𝐴 + 𝐵𝐺
𝑑
)𝑋 + 𝑋(𝐴 + 𝐵𝐺

𝑑
)
𝑇

+ 𝐸𝐸
𝑇

< 0,

(𝐶
𝑧
+ 𝐷
𝑧
𝐺
𝑑
)𝑋(𝐶

𝑧
+ 𝐷
𝑧
𝐺
𝑑
)
𝑇

− 𝜂𝐼 < 0,

(56)

and solving the auxiliary LMI optimization problem:

P
𝑎
:

{{

{{

{

minimize 𝜂

subject to 𝑋 > 0, 𝜂 > 0,

and the LMIs in (56) .

(57)

IfP
𝑎
admits the optimal solution 𝜂

𝑎
, then we have

𝛾̃
𝐺
𝑑

= 𝜂
1/2

𝑎
. (58)

In our case, we obtain the 𝛾-value:

𝛾̃
𝐺
𝑑

= 0.0407, (59)

which is just a 3% larger than the optimal 𝛾-value in (29)
attained by the ideal state-feedback controller.

Remark 3. The control forces exerted by the fully decentral-
ized velocity-feedback controller in (48) take the form

𝑢
𝑖
(𝑡) = 𝑘

𝑖𝑖
V
𝑖
(𝑡) , 𝑖 = 1, . . . , 5. (60)

If the actuation devices 𝑎
𝑖
, 𝑖 = 1, . . . , 5, in Figure 1 are assumed

to be linear dampers with respective damping constants 𝑏
𝑖
>

0, 𝑖 = 1, . . . , 5, then the actuation forces produced by the
passive-damping system are

𝑢
𝑖
(𝑡) = −𝑏

𝑖
V
𝑖
(𝑡) , 𝑖 = 1, . . . , 5. (61)

When all the coefficients 𝑘
𝑖𝑖
are negative, the control forces in

(60) can be exerted by a system of interstory linear dampers
with damping constants:

𝑏
𝑖
= −𝑘
𝑖𝑖
, 𝑖 = 1, . . . , 5. (62)

Consequently, the decentralized velocity-feedback energy-
to-peak controller defined by the gain matrix 𝐾̃

𝑑
can be

implemented by a set of linear passive dampers, with no
sensors, no communication system, and null power con-
sumption [19].

To demonstrate the good behavior of the passive-
damping system defined by the gain matrix 𝐾̃

𝑑
, the vibra-

tional response of the five-story building has been numeri-
cally simulated for this passive control configuration, taking
again the full scale North-South 1940 El Centro seismic
record as ground acceleration input. The maximum absolute
interstory drifts and the maximum absolute control efforts
corresponding to the passive-damping system are displayed
in Figures 5 and 6, respectively, using a red line with asterisks.
In both figures, the values corresponding to the ideal state-
feedback controller designed in Section 3 are displayed by
a blue line with circles. From the graphics in Figure 5, it
can be clearly appreciated that the levels of reduction in the
interstory drifts peak-values attained by the passive-damping
system are similar to those obtained by the ideal active state-
feedback controller. Looking at the graphics in Figure 6, it can
also be appreciated that similar, or even lower, control effort
peak-values are produced by the proposed passive-damping
system.

5. Conclusions and Future Directions

In this paper, we have presented a new design strategy that
makes it possible to synthesize fully decentralized velocity-
feedback energy-to-peak controllers by solving two succes-
sive LMI optimization problems. By taking advantages of the
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Figure 5: Maximum absolute interstory drifts corresponding to the
uncontrolled building (black line with rectangles), the ideal state-
feedback energy-to-peak controller defined by the gain matrix 𝐺

𝑠

(blue line with circles), and the passive-damping system defined by
the gain matrix 𝐾̃

𝑑
(red line with asterisks). The full scale North-

South El Centro 1940 seismic record has been used as ground
acceleration disturbance.

Passive
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Figure 6: Maximum absolute control efforts corresponding to the
ideal state-feedback energy-to-peak controller defined by the gain
matrix 𝐺

𝑠
(blue line with circles) and the passive-damping system

defined by the gain matrix 𝐾̃
𝑑
(red line with asterisks).The full scale

North-South El Centro 1940 seismic record has been used as ground
acceleration disturbance.

link between fully decentralized velocity-feedback controllers
and passive linear dampers, advanced active feedback control
strategies can be used to design complex passive-damping
systems for vibration control of large structures. The passive-
damping systems so obtained combine the simplicity and
robustness of passive control systems with the effectiveness
of active feedback control. To demonstrate the main features
of the new design methodology, a passive-damping system
for the seismic protection of a five-story building has been
designed with excellent results. It has to be pointed out,
however, that no satisfactory solutions are produced by the
proposed design strategy in the case of fully decentralized
velocity-feedback controllers under the 𝐻

∞
approach and,

consequently, further research attention should be paid to this
relevant problem. As other important lines of future work, we
can also include limited frequency domain [32], multistruc-
ture systems [33, 34], robust strategies, and adaptive strategies
[35, 36].
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