Taiwanese Journal of Mathematics

INEQUALITIES OF HERMITE-HADAMARD-FEJE´R TYPE FOR CONVEX FUNCTIONS AND CONVEX FUNCTIONS ON THE CO-ORDINATES IN A RECTANGLE FROM THE PLANE

Kuei-Lin Tseng, J. Pečarić, Shiow-Ru Hwang, and Yi-Liang Chen

Full-text: Open access

Abstract

In this paper, we establish some inequalities of Hermite-Hadamard-Fejér type for convex functions and convex functions on the co-ordinates defined in a rectangle from the plane.

Article information

Source
Taiwanese J. Math., Volume 12, Number 3 (2008), 703-717.

Dates
First available in Project Euclid: 21 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500602430

Digital Object Identifier
doi:10.11650/twjm/1500602430

Mathematical Reviews number (MathSciNet)
MR2417143

Zentralblatt MATH identifier
1157.26012

Subjects
Primary: 26D15: Inequalities for sums, series and integrals

Keywords
Hermite-Hadamard inequality Fejér inequality convex function convex function on the co-ordinates

Citation

Tseng, Kuei-Lin; Pečarić, J.; Hwang, Shiow-Ru; Chen, Yi-Liang. INEQUALITIES OF HERMITE-HADAMARD-FEJE´R TYPE FOR CONVEX FUNCTIONS AND CONVEX FUNCTIONS ON THE CO-ORDINATES IN A RECTANGLE FROM THE PLANE. Taiwanese J. Math. 12 (2008), no. 3, 703--717. doi:10.11650/twjm/1500602430. https://projecteuclid.org/euclid.twjm/1500602430


Export citation

References

  • J. L. Brenner and H. Alzer, Integral inequalities for concave functions with applications to special functions, Proc. Roy. Soc. Edinburgh A, 118 (1991), 173-192.
  • S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56.
  • S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489-501.
  • S. S. Dragomir, On the Hadamard's inequality for convex functions of the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5(4) (2001), 775-788.
  • L. Fejér, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369-390. (In Hungarian).
  • J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
  • K. C. Lee and K. L. Tseng, On a weighted generalization of Hadamard's inequality for G-convex functions, Tamsui Oxford Journal of Math. Sci., 16(1) (2000), 91-104.
  • M. Matić and J. Pečarić, Note on inequalities of Hadamard's type for Lipschitzian mappings, Tamkang J. Math., 32(2) (2001), 127-130.
  • C. E. M. Pecarce and J. Pečarić, On some inequalities of Brenner and Alzer for concave functions, J. Math. Anal. Appl., 198 (1996), 282-288
  • K. L. Tseng, S. R. Hwang and S. S. Dragomir, On some new inequalities of Hermite-Hadamard-Fejér type involving convex functions, RGMIA Research Report Collection, 8(4) (2005) Article 9. htpp://rgmia.vu.edu.au/
  • K. L. Tseng, G. S. Yang and S. Dragomir, On quasi convex functions and Hadamard's inequality, RGMIA Research Report Collection, 6(3) (2003), Article 1. htpp://rgmia. vu.edu.au/
  • K. L. Tseng, G. S. Yang and S. Dragomir, Hadamard inequalities for Wright-Convex functions, Demonstratio Mathematica, XXXVII(3) (2004), 525-532.
  • G. S. Yang and M. C. Hong, A note on Hadamard's inequality, Tamkang J. Math., 28(1) (1997), 33-37.
  • G. S. Yang and K. L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl., 239 (1999), 180-187.
  • G. S. Yang and K. L. Tseng, Inequalities of Hadamard's type for Lipschitzian mappings, J. Math. Anal. Appl., 260 (2001), 230-238.
  • G. S. Yang and K. L. Tseng, On certain multiple integral inequalities related to Hermite-Hadamard inequalities, Utilitas Math. , 62 (2002), 131-142.
  • G. S. Yang and K. L. Tseng, Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitzian functions, Taiwanese J. Math., 7(3) (2003), 433-440.