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INEQUALITIES OF HERMITE-HADAMARD-FEJER
TYPE FOR CONVEX FUNCTIONS AND CONVEX FUNCTIONS
ON THE CO-ORDINATES IN A RECTANGLE FROM THE PLANE

Kuei-Lin Tseng, J. Pecari¢, Shiow-Ru Hwang and Yi-Liang Chen
Abstract. In this paper, we establish some inequalities of Hermite-Hadamard-

Fejér type for convex functions and convex functions on the co-ordinates de-
fined in a rectangle from the plane.

1. INTRODUCTION

If f:[a,b] — R is a convex function, then

(1) f(a;—b>ﬁbia/abf(x)dxgw

is known as Hermite-Hadamard inequality [6] .
In [5], Fejér established the following weighted generalization of the inequalities

(1):

Theorem A. If f : [a,b] — R is a convex function, then the inequality

@ f("";”) /abwu)dxs/abf(w)w(w)dxs M/;wmdw

holds, where w : [a,b] — R is nonnegative, integrable and symmetric about ”T‘H’.

For some results which generalize, improve and extend the inequalities (1) and
(2) see [1 — 17].
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In [11, Remark 6] and [14, Theorem 1], Yang and Tseng proved the following
two theorems which refine the inequality (2).

Theorem B. Let f and w be defined as in Theorem 1. If P : [a,b] — R are
defined by

3) P(t)::/abf[tx—i—(l—t)a;—b]w(x)dx

then P is convex, increasing on [0, 1] and, for all t € [0, 1],

f(“;”’) /abwmdx:P(m <P SP(1)=/Qbf(w)w(w)dw

If we choose w (z) = 7= in Theorem B, then

1

“b-al,

) P (1)

bf[tx—i—(l—t)a;—b] dx

is reduced to a result established by Dragomir [2].

Theorem C. Let f : [a,b] — R be convex and let w : [a,b] — R be positive,
integrable and symmetric about ”T‘H’. If G :[0,1] — R is defined by

1 b b
) G<t>::m/a/af[tw+<1—t)y]w(x)w(y)dmy,

then (a) G is convex on [0,1], symmetric about 3, decreasing on [0, 3] and in-

creasing on [%, 1],

tzl[él,)l]G(t) =GO =60)= | fl@)w(z)dy
and
8,506 (3) = gtz L 1 (52) o
(b) we have
(5) [ (i)
and
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where P is defined as in (3).
If we choose w (z) = ﬁ in Theorem 3, then

b rb
(b_la)Q//f[tx—i—(l—t)y]dxdy

is reduced to a result established by Dragomir [2].

Recently Dragomir [4] has proved some results for convex functions and convex
functions on the co-ordinates defined in rectangle from the plane related to (1), (4)
and (6). In this paper, we shall establish some inequalities for convex functions and
convex functions on the co-ordinates defined in rectangle from the plane related to
Theorems A-C.

(6) G (1) =

2. MAIN RESULTS

Let us consider the bidimensional interval A = [a, b] x [c,d] in R? with a < b
and ¢ < d. A function F' : A — R will be called convex on the co-ordinates on
A if the partial mapping Fy : [a,b] — R, F, (u) := F (u,y) is convex on [a, D]
for each y € [c,d], and the partial mapping F,, : [¢,d] — R, F (v) := F (z,v)
is convex on [c,d] for each = € [a,b]. A function H : A — R will be called
increasing on the co-ordinates on A if the partial mapping H, : [a,b] — R,
Hy(u) := H(u,y) is increasing on [a,b] for each y € [c,d], and the partial
mapping H, : [¢,d] — R, H,(v) := H (z,v) is increasing on [c,d] for each
x € [a,b]. A function g : A — R will be called symmetric on the co-ordinates on
A if the partial mapping g, : [a,b] — R, g, (u) := g (u,y) is symmetric about %t
for each y € [c,d], and the partial mapping g, : [¢,d] — R, g, (v) := g (x,v) is
symmetric about <£¢ for each x € [a, b].

The following theorems hold:

Theorem 1. Let 0 <, p < 1. If F: A — R is convex on the co-ordinates
and g : A — R is nonnegative, integrable and symmetric on the co-ordinates, then
the inequality

F(“;b,cgd> /ab/cdg(x,y)dydm
< /ab/cd [’YF (x,cgd> +(1—7)F(a;b,y)]g(w,y)dydx

< [ [ P avas
s/ab/cd[gwu,c)w(x,d))
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+% (F (a,y) + F (b, y))] g9 (z,y) dydzx

b pd
< [F(a,c)—|—F(a,d)—|—F(b,c)—|—F(b,d)]//g(x,y)dydm

B~ =

holds. The inequality (8) is sharp.

Proof.  Since F' is convex on the co-ordinates on A and ¢ is nonnegative,
integrable and symmetric on the co-ordinates on A, we have the identities

(8) g(xz,v)=gla+b—2z,v) ((z,v) € A)
) gwy)=gu,ctd—y) ((u,y) €A)
and

F<a+b c—;—d)// (2, ) dyda
bodr r a+b—z c+d

- gt T
F (=) F (524 + 542 ) | g (2, ) dyde
bopd

S// <x,c+d>+F<a+b—x,c+d))
a Je | 2 2

a—+

F
b b
( 5 ,y>+F<a; ,c+d—y>>]g(w7y)dydm

d) g(a+b—w,y)] dxdy

b d
1—7 a+b
+/ 5 [F< 5 ,y)g(w,y)

+F <a+b,c+d—y>g(w,c+d—y)] dydz

= /ab cd [7F<x,cgd) +(1—7)F<a;b,y)]g(w,y)dydx
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bopd

<[ [ Fren+reesa-m)
—|——(F(x y)+Fa+b—z,9)| g (z,y)dydx
// g(z,y)+ F(x,c+d—y)g(x,c+d—y)|dydx

—|—/c /a 1_T7[F(x,y)g(x,y)—i—F(a—i—b—x,y)g(a—i—b—xay)]dmdy

_ /ab/ch(x,y)g(x,y)dydm.

Ifxye[ab]theno bos g-a doy um¢ <9 bosyg-a _q doy e
T = a—i—bab a—i—b—x—Ha—i—Z:—ﬁb,y:ZZZc b—dandc+d—y=

y—c

cc —|— d T—2d. 1t follows from the above conclusions, the convex1ty of F' on the

“ordinates on A and the identities (9) and (10), that we have

l/b/dﬁwxﬁﬁg(%y)@mx

// F(z,y)+ F(z,c+d—y)lg(x,y)dydx

+/ﬁ/Q_:£“Nxﬂ)+ﬁ%a+b—wwﬂ9@awdm@

- [ 5[ (e =)

y—c  d—y
F 29
+ <x,d_cc+d_cd>]g(x,y)dydm

d rb
1—0p b—=x T—a
[ [5 [F(b_aa—i—b_ by)

T —a b—=x
+F<b_aa+5jf%40]9@zwdﬂw

<[ [$litre

+—F(x,d) + Z— (z,c)+ Z_ yF(m,d)] g (z,y) dydx

NI

(11)

(a;y)
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xr—a
+

Fb,y)+ S22 F (a,9) + L= F (b,3)| g (z, ) dedy

l// F(z,¢) + F (x,d))

_T*me+F®yﬂ (z,y) dydz.

Similarly, we have

l// F(z,¢)+ F (z,d))

Ll F g+ re y>>] (e, y) dyda

(12) g/ﬁ/ F(a,c)+ F (b,e) + F(a,d) + F (b,d))
+_ZQFm@+Fm®+Fw@+Fw®ﬂ(@w@m

b pd
[F'(a,c)+ F (a,d) + F (b,c)+ F (b, d)] / / g (z,y) dydx.

] =

Combining (10)-(12), we get (7).

If in (7) we choose F (z,y) = zy and g (z,y) = 1 ((x,y) € A), then the
inequality (7) becomes an equality, which shows that the inequality (7) is sharp.
This completes the proof.

Remark 1. Let f and w be defined as in Theorem 1. If we choose v = p =1,
F(z,y) = me) and g (z,y) = w(z) ((x,y) € A), then Theorem 1 reduces to
Theorem A.

Remark 2. In Theorem 1, if we choose v = p =5 and g(z,y) = m
((x,y) € A), then Theorem 1 reduces to a result estabhshed by Dragomir [4, The-
orem 1].

Theorem 2. Let F and g be defined as in Theorem 1 and let H : [0,1]> — R
be defined by

(13) H(t,s) // <tw—|— —t) ;—b,sy—i—(l—s)C—gd>g(x,y)dydm.

Then:




Inequalities of Hermite-Hadamard-Fejér Type 709

(a) The function H is convex on the co-ordinates on [0, 1],
(b) The function H is increasing on the co-ordinates on [0,1]?,

b d
s H () = HL) = [ [ F )y dyds
(t,5)€[0,1]? a Je

and

b pd
inf H(t,s):H(0,0):F<a+b,c+d)/ / g (z,y)dydx.
(t.5)€[0,1)? 22 JJaJe

Proof. (a) Fix s € [0,1]. Since F is convex on the co-ordinates on A and g
is nonnegative on A, we have for ¢, t2 € [0,1] and o, § > 0 with o+ 5 = 1 that

H (aty + Pta, s)
b pd a+b
://F((at1+m2)x+(1—at1—ﬁt2) >
sy+ (1—s) S d)g(oc,y)dydm

:/ab/ch<a<t1x+(1_tl)a-2|-b>

b +d
—|—ﬁ<t2x+(1—t2)a—2’— ),sy—i—(l—s) CT) X g (z,y)dydzx

/ab/cd [aF(tlx—i—(l—tl)a;—b,sy—i—(l—s)C+d>

2
b +d
+ﬁF<t2x+(1—t2)a+ ,sy—i—(l—s)c )]g(m,y)dydm

IN

2 2
= aH (t1,s) + BH (t2, s).

Similarly, if ¢ is fixed in [0, 1], then for si, s2 € [0,1] and o, § > 0 with
a+ (=1, we have

H (t,as1 + Bs2) < aH (t,s1) + BH (t, s2)

and the statement is proved.

(b) Since F is convex on the co-ordinates on A and g is nonnegative, integrable
and symmetric on the co-ordinates on A, using the identities (9) and (10), we have,
for all (t,s) € [0, 1],



710 Kuei-Lin Tseng, J. Pecari¢, Shiow-Ru Hwang and Yi-Liang Chen

H (t,s)
// [ (m+ 1—t)aT+b,sy+(1—s)c—;d>+
(14) F (tw—f—(l—t) GTM,S(C—I—d—y)—i—(l—S) C—;d)] g (z,y) dydz

b d
z// (m -2ttt )g<w,y>dydm

and
H (t,s)
// [ (tx+1 ) ;—bsy—i—(l s)cgd>
(15) +F <t (a+b—2)+(1-1) a+b,sy—|—(1—s) C+d)] g (z,y) dxdy

z// (tx+ 1—t)aTM,sy+(1—s)c+d

) g (z,y) dxdy

If0<t <ty <land0 < sy < sy <1, then, for all (¢,s) € [0, 1]2, it follows

from the convexity of H on the co-ordinates on [0, 1]2, (14) and (15) that

H (ta,s) — H (t1, 5) S H (t1,s) — H (0, s)
to — 11 - t1 —0

>0

and H(t,s2) = H (t,51) _ H (t,51) = H (£,0)

>0
So — 81 - s1—0

which show that H is increasing on the co-ordinates on [0, 1]2. Hence

b pd
sup H(t,s):H(l,l)://F(x,y)g(x,y)dydm

(t,)€[0,1]?

and

b d b pd
inf H(t,s):H(0,0):F<a;— ,C—; )//g(x,y)dydm.

(t,s)€[0,1]?
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This completes the proof.

Remark 3. In Theorem 2, if we choose g (z,y) = m, then Theorem 2
reduces to a result established by Dragomir [4, Theorem 2].

Remark 4. Let f and w be defined as in Theorem B. In Theorem 2, if we
choose F'(x,y) = f( ) and g (z,y) = w (z) ((z,y) € A), then H (¢, s) reduces to

(3).

Theorem 3. Let g be defined as in Theorem 1 and let F' : A — R be convex.
Then:

(a) H is convex on [0,1)* where H is defined as in (13).

(b) Define h : [0,1] — R by h(t) := H (t,t). Then h is convex, increasing on

(16) 81[10p1]h // (z,v) g (x,y) dydz
te
and
, a+b c+d\ b [¢
(17) téféfl]h(t):h(o):F< 5 g )/ / g (z,y)dydz.

Proof.  (a) Since F' is convex and ¢ is nonnegative, we have for (¢, s1),
(ta, s2) € [0,1)% and @, > 0 with @ + 3 = 1 that

H (o (t1, 51) + B (t2, 52))

aty + Pto, asy + (s2)

= H
= [ [ P (@t s oz - o 5

(as1 + Bs2) y + (1 — (asy + Bsa)) ;L d) g (z,y)dydx

b pd
= [ [ (a (e - s - 5

a+b c+d
+ﬁ<t2$+(1—t2) 2 , 52y + (1 — s2) 2 ))9($7y)dyd1’

b pd
b d
// [aF<t1x+(1—t1)a; ,5>’1y+(1—$1)CJ2r )

a+b c+d
+5F<7529€+(1—752) 2 , 52y + (1 — s2) )]g(m,y)dydm

= aH (t1,s1) + BH (t2, s2) ,

IN
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which shows that H is convex on [0, 1]%.
(b) Let t1, to € [0,1] and o, § > 0 with a + = 1. Then
h (aty + Bta)
= H (a(ti, t1) + B (t2, 12))
< aH (ty, 1) + BH (b2, t2)
= ah (t1) + h(t2)

which shows that % is convex on [0, 1]. By Theorem 2, we have that, for 0 < ¢ <
ta <1,

h(t1) = H (t1,t1) < H (t2,t1) < H (t2,t2) = h(t2)
which show that & is increasing on [0, 1]. Since h is increasing on [0, 1], (16) and

(17) hold. This completes the proof.

Remark 5. In Theorem 3, if we choose g (z,y) 7> then Theorem

_ 1
= (b—a)(d—c
10 reduces to a result established by Dragomir [4, Theorem 3].

Theorem 4. Let F and g be defined as in Theorem 1 and let K : [0,1]> — R
with

a Seo=[ [

Fz+(1—-t)y,sz+ (1 —s)u)g(z,2)g(y,u)dzdudzdy.
Then:

(a) K is symmetric on the co-ordinates on [0, 1]* and convex on the co-ordinates
2
on [0, 1]°.

(b) K (-, s) is decreasing on [0,%] and increasing on [$,1] for all s € [0,1],
K (t,-) is decreasing on [0, 3] and increasing on [%,1] for all t € [0, 1],

11
inf K (ts K
(t,5)€[0,1)? he) = (2 2)

(19)
//// <x+y z—;u>g(xvz)g(y7u)d2dudmdy
and
sup K (t,5) = K (0,0) = K (1,1)
(tse[o1]
(20)

// (z,z) xzdzdm// (z, z) dzdx.



Inequalities of Hermite-Hadamard-Fejér Type 713

(¢) For all (t,s) € [0,1]%,
K (t,s)
> max{H (t,s),H(1 —t,s),H(t,1—s),H(1—1t,1—3s)}

1) X /ab /dg(x,z) dzdz
(55 ([ f e

where H is defined as in (13).

Proof. (a) From the definition of K, it is obvious that K is symmetric on the
co-ordinates on [0, 1]2. Using a similar argument as the proof of Theorem 2, we
have that K is convex on the co-ordinates on [0, 1]°.

(b) Since F' is convex on the co-ordinates on A and g is nonnegative on A, we
have, for (¢, s) € [0,1]?,

K (t,s)

//// Fto+(1—t)y,s2+ (1 —s)u) +

Fz+(1-t)y,(1—s)z+su)]g(z, 2)g(y,u)dzdudzxdy

(22)
Z//// <t$+ 1—t)y,z;u>g(x,z)g(y,u)dzdudmdy
- (1)

and
K (t,s)
//// Flz+(1-t)y,sz+(1—s)u)+

(23) F(1-t)z+ty,sz+(1—s)u)]g(z,2)g(y, u)dzdudzdy

A\

/ab/ab/cd/ch<xT+y,sz+(1—3)u>9($7z)9(y,U)dzduda:dy
:K<%,s>.
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fO<s <sp<3<sg<sy<land0<t; <tp<i<ty<ity <1, thenit
follows from (23), (24) and the convexity of K on the co-ordinates on [0, 1f* that

K (t,s5) = K (t,s1) _ K (t,5) = K (t,51)

< . <0,telo,1],
So — 81 251
K _K Kt, _K tvl
(tsa) ~ K (t53) L Kt sa) : (t:3) >0,te0,1],
S4 — S3 S4— 3
K (t2,8) — K K (35) — K (t,
(f2,8) — K (t1, 5) _ (2 31) 19) o, 5e [0,1],
to — 11 72—t

and
K - K K(t ) - K l?
(ta,s) (t3,s) > (ta, ) - (2 8) >0, s€l0,1]
ts —t3 ta—3

which show that K (¢,-), K (-, s) are decreasing on [0, 1] and K (¢, ), K (-, s) are
increasing on [1, 1] for (t,s) € [0,1]*. Hence (19) and (20) hold.
(c) By the definition of g, we have the identities (8) and (9) again, hence we

get, for (¢, s) € [0, 1]

K (t,5) //// P+ —1)y, sz +(1—s)u)+

F(tz+(1-t)y,sz+(1—s) (c+d—u))] g (z, 2)

g (y,u) dudzdzdy

//// (m+ 1—t)y,sz+(1—s)c—gd>

(z,2) g (y,u) dudzdxdy

o //// [ (m+ 1—t)y,sz+(1—s)c—gd>

+F <tw—|—(1—t)(a—i—b—y),sz—i—(l—s)C—;d)]

g (x,2) g (y,u)dydudzdz

z// (m+ 1—t)aT+b,sz—|—(1—s)c—;d>
g(x,z)dzdm-/ab/cdg(x,z)dzdm
:H(t,s)-/ab/cdg(x,z)dzdm.
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From the conclusion in (a), it follows that
(25) K(ts)=K(l—-t,s)=K({t,1-s)=K(1—-t1-5s)

for all (¢, s) € [0,1]*. Therefore, by the inequality (24), the identity (25) and the
conclusion of Theorem 2, we deduce the inequality (21). This comletes the proof.
Remark 6. In Theorem 4, if we choose g (z,y) = m, then Theorem 4

reduces to a result established by Dragomir [4, Theorem 4].

Remark 7. Let f and w be defined as in Theorem C. In Theorem 4, if we

— f(z) —
choose F' (z,y) = @ [P s and g (z,y) = w(x) ((x,y) € A), then Theorem
4 reduces to Theorem C.

Theorem 5. Let F' and g be defined as in Theorem 3 and let k : [0,1] — R
with k (t) := K (t,t) where K is defined as in (18). Then:

(a) K is convex on [0,1)% and k is convex on [0, 1].

(b) k is decreasing on [0, %] and increasing on [3,1],

sup k(t) = k(0) = k(1)

t€[0,1]
b d b d
://F(w,y)g(wvy)dydm-//g(w,y)dydm
and

1
inf k(1) =k(=
telfé,u Q <2>

b rb pd pd

(¢c) Forall t € [0,1],

b pd
k(t)Zmax{h(t),h(l—t)}-/ / g (z,y) dyda

where h is defined as in Theorem 3.

Proof. The proof is similar to that of Theorem 3.

_ 1
= (b—a)(d—c)
5 reduces to a result established by Dragomir [4, Theorem 5].

Remark 8. In Theorem 3, if we choose g (z,y) , then Theorem
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